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An adhesion problem
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Figure: Coupling between far field an cohesive zone.
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a contact radius

Figure: Hertz contact.
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a contact radius
w adhesion energy

Figure: With adhesion.
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a contact radius
w adhesion energy
δfp flat punch disp.

Figure: With adhesion at constant radius.
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the flat punch displacement

E ∗δfp
2 = 2πaw

A hand waving argument

E ' E ?
(
δ

a

)2

a3

dE
d(πa2)

= w Figure: With adhesion at constant
radius.
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Force – flat punch contribution

Ffp = S(a)δfp

where

S(a) =
dFhertz

dδhertz
= 2aE ?

is the contact stiffness

a contact radius
δfp flat punch disp.
w adhesion energy
E∗ reduced modulus
S(a) contact stiffness

Figure: With adhesion at constant
radius.
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δ = δH + δfp

F = FH + Ffp

with

Ffp = S(a)δfp

Figure: Hertz contact.
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δ = δH + δfp

F = FH + Ffp

with

Ffp = S(a)δfp

Figure: With flat punch contribution.
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δ = δH + δfp

F = FH + Ffp

with

Ffp = S(a)δfp

and

E ∗δfp
2 = 2πaw

Figure: JKR adhesive contact.
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JKR equations

For a sphere of radius R

δJKR =
a2

R
−
√

2πaw

E ?

FJKR =
4E ?a3

3R
− 2
√

2πa3wE ?

Figure: With adhesion at constant
radius.

[Johnson 1971]
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Orders of magnitude at rupture

Fadh =
3

2
πRw

δfp =

(
πw2R

E ?2

)1/3

Figure: With adhesion at constant
radius.

[Johnson 1971]
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Does it conform to our experience ?

1. gravity against surface forces

2. surface forces win if

R2 < w/ρg

3. Cut-off radius around 1 mm !!!

Figure: A typical MEMS

There is something more to it...roughness
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Figure: Meniscus
mediated adhesive
contact.

For R '1 µm
and
E ? '1 MPa,
δf p '0.3 µm.

Impact of roughness

Figure: Impact of roughness as a function of modulus.

From [Fuller 1975]
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Figure: JKR does not explain all.

From [Grierson 2005]
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Surface interactions

Interaction potential V (z)
Cohesive stresses

σcoh = −dV

dz

and adhesion energy

w = V (+∞)− V (0)

so that

w = −
∫ +∞

0
σcoh(z) dz

Figure: Interaction energy
as a function of surface
separation
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Can we measure the cohesive stresses directly ?

1. Surface forces
measurements
with fine tips
allow for direct
measurement of
local inter-surface
interactions

2. note long range
contribution

Figure: Tip/surface interaction.

After [Lantz 2001]
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Figure:
Meniscus
mediated
adhesive
contact.

Figure: Meniscus mediated surface forces.

From [Barthel 1996]
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Self-consistence

w = −
∫ +∞

a
σcoh(r)

∂h

∂r
dr

with the gap

h = hcoh + hhertz

so that

w = α
σcoh

2ε

E ?
+ β(a)σcoh

Cohesive zone

Figure: Cohesive zone.
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Self-consistence

w =
π

4

σcoh
2ε

E ?
+ β(a)σcoh

Local deformation contribution

w =
g(a)2

πa

2

E ?

”pseudo” stress intensity factor

g(a) =
π
√

a

2
√

2
σcoh

√
ε

Coupling to the far field

Macroscopic calculation of local
deformation effects

w =
E ?δ2fp
2πa

Coupling

δfp =
2

E ?
g(a)
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Figure: Cohesive zone.

Macroscopic relations

δ = δH + δfp

F = FH + Ffp + Fext

Ref: [Barthel 2008]
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Figure: Cohesive zone.

Macroscopic relations

δ = δH + δfp

F = FH + Ffp + Fext

Ref: [Barthel 2008]
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Figure: Cohesive zone.

Figure: Cohesive zone and flat punch contributions.

λ ≡
δfp
δint
'
δfpσcoh

w
=

σcoh(
wE?2

πR

)1/3

Ref: [Tabor 1977, Maugis 1992]
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The lower lengthscale problem

Animal pad division Average stress

Figure: Cut-off with size reduction.

After [Arzt 2003]
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The lower lengthscale problem

Animal pad division

Figure: Various pads as a function of
species.

Size Effect

Figure: Pad division as a function of
weight.

After [Arzt 2003]
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Figure: Adhesive contact in the
presence of a thin film.

Figure: Force vs contact radius.

From [Tardivat 2001]
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Figure: Effective adhesion energy and modulus as a function of film thickness.

From [Tardivat 2001]
E ?2 1.95 MPa
E1 3.5 MPa
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δ(a, t, [E ]) = δH(a, t, [E ]) + δfp

F (a, t, [E ]) = FH(a, t, [E ]) + S(a, t, [E ])δfp

Figure: Adhesive contact in the presence of a thin film.

[Barthel 2007]
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δ(a, t, [E ]) = δH(a, t, [E ]) + δfp

F (a, t, [E ]) = FH(a, t, [E ]) + S(a, t, [E ])δfp

Figure: Adhesive contact in the presence of a thin film.

[Barthel 2007]
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the flat punch displacement – Compliance method

1

2
δ2fp

dS

da
= 2πaw

A hand waving argument

E ' 1

2
Sδfp

2

and

dE
d(πa2)

=
1

2

1

2πa

dS

da
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E ?2 1.95 MPa
E1 3.5 MPa

Figure: Effective stiffness and force as a function of film
thickness.

See [Yu 1990, Schwarzer 1993, Perriot 2004, Sridhar 2004,
Mary 2006]...
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η =
t(

πwR2

E1
?

)1/3

ā = ηã

Ds = (ηã)2 ∆s,0 −
√

2 (ηã)1/2 1

Γ(1)

Πs = (ηã)3 Πs,0

2
− 2
√

2 (ηã)3/2 Eeq
Γ(1)

Figure: Force vs. penetration fr a
coated substrate.

[Barthel 2007]
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Figure: Force vs contact radius.

Figure: Adhesion force vs. contact radius.

[Tardivat 2001, Barthel 2007]
E ?2 1.95 MPa
E1 3.5 MPa
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elastomeric contact

Figure: Receding and growing contacts
for a viscoelastic material.

Charrault 2009.
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Growing contact Receding contact

C. Gauthier et al.
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Figure: Growing and receding
contacts for a viscoelastic
material.

Typical JKR data

Figure: Force vs contact radius for the adhesive
contact of an elastomer.

From [Deruelle 1995]
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Figure: Creep and relaxation
functions for a viscoelastic
material. Figure: Real and imaginary parts of the

modulus of natural rubber.

φ(0) = 2
E?(t=0) , φ(∞) = 2

E?(t=∞) Data H. Montes, PPMD.

k = E ?(t =∞)/E ?(t = 0)� 1
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Figure: History of contact radius for a viscoelastic material.
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Figure: Cohesive zone.

Figure: Convected cohesive zone.
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Figure: Cohesive zone.

Figure: Convected cohesive zone.



Homogeneous Coatings viscoelastic Conclusion

Effective modulus of cohesive zone

w =
g(a)2

πa
φ1(tr )

with

φ1,cl(t) =
2

t2

∫ t

0
τφ(τ)dτ (closing)

Figure: Convected cohesive zone.

From [Barthel 2008]
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Effective modulus of cohesive zone

w =
g(a)2

πa
φ1(tr )

with

φ1,op(t) =
2

t2

∫ t

0
(t − τ)φ(τ)dτ (opening)

Figure: Convected cohesive zone.

From [Barthel 2008]
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Figure: Effective compliances.
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Figure: Growing and receding
contacts for a viscoelastic
material.

Effective coupling constant

• Receding contact

δfp ' φ0(∞)g(a) =
2

E ?(∞)
g(a)

• Growing contact

δfp ' φ0(tr )g(a)

where

φ0(t) =
1

t

∫ t

0
dτφ(t − τ)

From [Barthel 2008]
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Figure: Coupling constants.
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Figure: Far field and
adhesion of elastomers.

Figure: Effective adhesion.
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Figure: Effective adhesion from compliance.

Barthel and Fretigny, to be publ.
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Figure: Calculated effective toughness.

Figure: Toughness data.

[Tay 2006]
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Conclusion

• macroscopic description
energy balance

• details of surface interactions
cohesive stresses – self consistent
description

• coatings
macroscopic description –
compliance method

• time dependent materials
cohesive stresses couple to
dissipative material response

Figure: Coupling between far
field an cohesive zone.



Homogeneous Coatings viscoelastic Conclusion

E. Arzt, S. Gorb, and R. Spolenak.
From micro to nano contacts in biological attachment devices.
Proc. Natl. Acad. Sci. USA, 100(19):8 – 10, 2003.

E. Barthel.
Elastic adhesive contact – JKR and more.
J. Phys. D: Appl. Phys., 41:163001, 2008.

E. Barthel, X. Y. Lin, and J. L. Loubet.
Adhesion energy measurements in the presence of adsorbed
liquid using a rigid surface force apparatus.
J. Colloid Interface Sci., 177:401–406, 1996.

E. Barthel and A. Perriot.
Adhesive contact to a coated elastic substrate.
Journal of physics D: Applied physics, 40:1059–1067, 2007.

M. Deruelle, L. Leger, and M. Tirrel.
Adhesion at the solid-elastomer interface : influence of the
interfacial chains.



Homogeneous Coatings viscoelastic Conclusion

Macromolecules, 28:7419–7428, 1995.

K. Fuller and D. Tabor.
The effect of surface roughness on the adhesion of elastic
solids.
Proc. Roy. Soc. A, 345:327–342, 1975.

D. S. Grierson, E. E. Flater, and R. W. Carpick.
Accounting for the JKR-DMT transition in adhesion and
friction measurements with atomic force microscopy.
J. Adhesion Sci. Technol., 19:291–311, 2005.

K. L. Johnson, K. Kendall, and A. D. Roberts.
Surface energy and the contact of elastic solids.
Proc. Roy. Soc. London A, 324:301–313, 1971.

M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. Van Schendel,
P. Kappenberger, S. Martin, A. Baratoff, and H.-J.
Güntherodt.



Homogeneous Coatings viscoelastic Conclusion

Quantitative measurement of short-range chemical bonding
forces.
Science, 291:2580–2583, 2001.

P. Mary, Chateauminois A., and C. Fretigny.
Deformation of elastic coatings in adhesive contacts with
spherical probes.
Journal-of-Physics-D-Applied-Physics, 39:3665–73, 2006.

D. Maugis.
Adhesion of spheres: The JKR-DMT transition using a
dugdale model.
J. Colloid Interface Sci, 150:243–69, 1992.

A. Perriot and E. Barthel.
Elastic contact to a coated half-space: Effective elastic
modulus and real penetration.
J. Mater. Res., 19:600–608, 2004.

N. Schwarzer, F. Richter, and F. Hecht.



Homogeneous Coatings viscoelastic Conclusion

Determination of mechanical properties of thin films : a
theoretical feasibility study.
Surface and coatings technology, 60:396–400, 1993.

I. Sridhar, Z. W. Zheng, and K. L. Johnson.
A detailed analysis of adhesion mechanics between a compliant
elastic coating and a spherical probe.
J. Phys. D: Appl. Phys., 37:2886–2895, 2004.

D. Tabor.
Surface forces and surface interactions.
J. Colloids Interface Sci., 58:2, 1977.

C. Tardivat, H. Hervet, and L. Léger.
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