Contact and friction of thin hydogels films: the role of poroelasticity

J. Delavoipière, Y. Tran, E. Verneuil and A. Chateauminois

Soft Matter Sciences and Engineering Laboratory
ESPCI, France

C.-Y. Hui

Mechanical and Aerospace Engineering
Cornell University, USA
Motivations

Functionalization of glass substrates by hydrophilic coatings

Ex: prevention of mist formation

→ Tribological performance: friction, scratch resistance?

Thin hydrogels layers mechanically confined within contacts between rigid substrates

- Stress amplification as compared to bulk hydrogel substrates
- Enhanced drainage of the highly swollen gel network

Role of poroelasticity on mechanical and frictional properties?
Model gel networks

• **Poly(PEGMA)**

\[
\text{H}_3\text{C}\left[\text{O-}\right]_n\text{O-}\text{CO-CH}_2\text{CH}_3
\]

poly(ethylene glycol) methyl ether methacrylate
PEGMA (n = 4/5)

• **Poly(DMA)**

\[
\text{CH}_3\text{CH}_2\text{CH}_2\text{C}=\text{N}\text{O}
\]

N,N-dimethylacrylamide

Rubbery

\[\Phi_g \approx 0,18 \text{ vol/vol}\]

Glassy

Tiol-ene chemistry route → homogeneous thin films:

- grafted to glass or silicon wafer substrates
- controlled thickness from 250 nm (± 5%) to 2 µm (± 10%)
- controlled cross-linking (swelling ratio from 2.5 to 4)

*Li et al, Langmuir, 2015
Chollet et al, ACS Appl. Mat. Interfaces, 2016*
Normal indentation response

Time-dependent indentation depth

Poly(PEGMA) $e_0=9$ µm $R=5.2$ mm
Approximate poroelastic contact model

Within the limits of confined contact geometries \(a \gg e_0 \)

- No expansion of film deformation outside the contact
- Compression of the layer within the contact without lateral expansion
 \(\rightarrow \) only vertical displacement components are accounted for
- Rigid substrates

Compressive strain

\[
e(\tau, t) = \frac{c_0 - c(t)}{c_0} = \frac{\delta(t) - r^2/2R}{c_0}
\]
Indentation kinetics

Mixture theory developed by Biot (1955)

- Normal contact stress: \(\sigma(r, t) = \tilde{E} \varepsilon(r, t) + p \)

Elasticity of the polymer network

\[
\tilde{E} = \frac{2G(1-\nu)}{1-2\nu} \quad \text{Uniaxial compression modulus}
\]

Pore pressure

- Water transport driven by Darcy’s law: \(J_r = -\kappa \frac{dp}{dr} \)

\(\kappa = \frac{D_p}{\eta} \)

- Volume conservation

\[
\frac{t}{\tau} = -\frac{\delta}{\delta_\infty} + \frac{1}{2} \log \left(\frac{1 + \delta/\delta_\infty}{1 - \delta/\delta_\infty} \right)
\]

\(\delta_\infty = \left[\frac{F_n e_0}{\pi R \tilde{E}} \right]^{1/2} \)

Equilibrium indentation depth

\(\tau = \frac{1}{2\sqrt{\pi}} \frac{\eta}{D_p} \left(\frac{F e_0 R}{\tilde{E}^3} \right)^{1/2} \)

Poroelastic time
Fit of experimental data to the poroelastic contact model

\[\Delta = \frac{\delta}{\delta_\infty} \]

\[T = \frac{t}{\tau} \]

Poly(PEGMA) \(e_0 = 9 \, \mu m \)

- \(R = 20.7 \, mm \), \(F = 7 \, mN \), \(F = 88 \, mN \)
- \(R = 5.2 \, mm \), \(F = 32 \, mN \), \(F = 11.5 \, mN \)
Characteristic poroelastic time τ

$\tau \propto (F_n e_0 R)^{1/2}$

$5 < e_0 < 9 \mu m$

$5.2 < R < 20.7 \text{ mm}$
Equilibrium indentation depth

Poly (PEGMA)

\[\delta_{\text{dry}} = 9 \, \mu m \]

\[\delta_{\text{dry}} = 5 \, \mu m \]

\[R = 5.2 \, \text{mm} \, \text{and} \, 20.7 \, \text{mm} \]

\[0.42 \times \]

\[\delta_{\infty} \propto \left(\frac{F_n e_0}{R} \right)^{1/2} \]

Poly (DMA)

\[\delta_{\text{dry}} = 4.5 \, \mu m \]

\[\phi_g \]

\[R = 5.2 \, \text{mm} \, \text{and} \, 20.7 \, \text{mm} \]

Deviation from the model

Close to \(\phi_g \)
Glass transition induced by poroelastic drainage

- Lateral contact experiments \rightarrow shear modulus measurements during the course of indentation drainage

\[
\Delta = \Delta_0 \sin(\omega t) \quad \Delta_0 \leq \pm 100 \text{nm}
\]

Poly(PDMA)

Storage shear modulus G' (Pa)

Increasing F_n

Poly(PEGMA)

Storage shear modulus G' (Pa)

Increasing F_n

F_n from 4.5 to 13.7 N

No transition

Glass transition
Steady-state friction: \text{poly(DMA)} \text{ with } \phi > \phi_g

\textbf{Friction force}

- \text{Velocity-dependence: two regimes} \rightarrow \text{poroelastic effect?}

\begin{itemize}
 \item $F_n = 600 \text{ mN}$
 \item $F_n = 200 \text{ mN}$
 \item $F_n = 50 \text{ mN}$
 \item $e_0 = 3.1 \mu m$
\end{itemize}

\textbf{Contact shape}

- [Images of contact shapes at different loads]
Contribution of poroelasticity : Peclet number

\[Pe = \frac{2a}{v\tau} \]

\[\frac{\text{Contact time}}{\text{Poroelastic time}} \]

Contact radius

Friction force

\(Pe > 1 \) : drainage equilibrium \(\sim \) normal indentation

\(Pe < 1 \) : out-of equilibrium state \(\rightarrow \) incomplete drainage

\(\tau \) determined independently from indentation experiments
Pore pressure distribution

- Extension of the poroelastic contact model to steady-state sliding

Moving coordinate system

\[\frac{\partial}{\partial t} \bigg|_{x,y} \rightarrow -v \frac{\partial}{\partial x} \]

Pore pressure field induced during lateral motion

\[-v \frac{\partial \epsilon}{\partial x} = -\kappa \nabla^2 p \]

Darcy’s Law

General solution for pore pressure:

\[p = -\frac{v}{8 R e_0 \kappa} r^3 \cos \theta + \sum_{n=0}^{\infty} a_n r^n \cos n\theta \]

With \(p=0 \) on the contact line to be determined
Contact stress: velocity dependence

Hyp: we enforce that contact line is a circle with $p(a_0)=0$

$$\sigma(r, t) = \tilde{E} c(r, t) + p$$

$$\sigma(r, \theta) = \frac{\tilde{E}}{2Re_0} \left(a_0^2 - r^2 \right) \left[1 + \frac{v}{4\tilde{E}\kappa} r \cos \theta \right]$$

Critical velocity v_c

$$v_c = \frac{4\tilde{E}\kappa}{a_0}$$

$Pe = 1$

Above v_c: negative contact stress \rightarrow contact line shrinks non-uniformly
Reduction in contact size \rightarrow build-up of pore pressure at increasing velocities
Contact size reduction for $\text{Pe} < 1$

- Numerical solution of the poroelastic contact model

Contact line $a(\theta,v)$ ensuring:

$$\sigma(r, \theta) > 0$$

$$p(r = a(\theta,v)) = 0$$

$$\int_{A} \sigma(r, \theta) = F_n$$

Calculated contact shape and normal contact stress

$$\text{Pe}=0.1$$
Conclusions & perspectives

- Indentation of thin hydrogels films confined within glass substrates
 - Approximate poroelastic contact model
 - Scaling laws for δ_∞ and τ as a function of - gel mechanical and diffusive properties
 - contact geometry & loading conditions
 - Glass transition induced by drainage

- Frictional properties driven by poroelastic time
 - Two frictional regimes - $Pe > 1$ equilibrium drainage state
 - $Pe < 1$ pressure imbalance resulting in contact asymmetry and size reduction

→ Contact changes accounted for by poroelasticity

Contribution to friction force of viscous dissipation associated to poroelastic flow?

Friction force across glass transition?