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Friction between macroscopic bodies: a longstanding problem....

e Surface geometry & contact mechanics

Surface roughness-> multi-contact interface

Actual contact area << Apparent contact area .
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e Surface physical-chemistry

Pinning / depining

Molecular scale dissipative processes /\% ~— ji Rubbers
/ VA =

Schallamach, 1963




Rough contacts mechanics

* Non adhesive single asperity elastic contacts
Hertz (1881)

e Adhesive contact between smooth surfaces (\J@Lﬂ

JKR & DMT (1971)

* Contact between nominally flat surfaces > 0(2)
Greenwood & Williamson (1966)

Real contact area A o< P

— Justification of Amontons-Coulomb’s friction law
- Extensions to more complex geometries
Archard (1957), Ciavarella (2008)...
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* Rough contact models based on a spectral description 10

10
of surface topography
Persson (2001), Robbins (2007) , Miser (2008)...
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Scope

Transparent randomly rough surfaces consisting in distributions of spherical asperities ( ~50 um)
GW type surfaces
Imaging of micro-contacts distributions
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Load dependence of the real contact area A(P)
+

Statistical distributions of micro-contacts pressure and size

Role of elastic coupling between asperities ?
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Patterned surfaces and associated sphere-on-plane contacts / I

» Soft Asperities (SA) surfaces

Surface density: ¢ =0.1and 0.4

Smooth glass lens (R=128 mm)

¥

Patterned elastic PDMS substrate

Replication of a micro-machined PMMA template

* Lateral and height distributions of spherical asperities perfectly controlled by design
- Uniform random height distribution (R=100 pum, 30 um < height <60 pum)

* Small scale roughness on the micro-asperities - normal contact experiments only



Patterned surfaces and associated sphere-on-plane contacts /IT

* Rigid Asperities (RA) surfaces

Surface density: $=0.41

Patterned glass lens (R=13 mm)
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smooth PDMS substrate

* Gaussian distribution of asperity sizes and heights ( a posteriori characterization)

* Smooth micro-asperities - normal contact and friction experiments

Water droplet condensation method....



Fabrication of rigid asperities patterns by droplet condensation method

1. Water droplet condensation

Silanized glass (HMDS)
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* 2. PDMS replica

Sylgard 184 + crosslinker
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* 3. Sol gel replica on a glass lens

PDMS mould 1

Glass lens
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Shape of the asperities controlled by the contact angle

Reactive sol-gel solution

Height h (um)

80

70t

60y

50t

K = R(1 — cosf)

0 ~ 57° o

0 20 40 60 80 100

Radius R (um)

120



Contact devices

Contact imaging of micro-asperities contacts

v Contact radii & spatial distributions of micro-contacts (RA & SA surfaces)
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v’ Contact pressure distribution (RA surfaces only) 1.57

Hertz law assumed to be obeyed locally
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Load dependence of the real contact area A(P)
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Power law dependence A oc P"

RA surface n=0.81+0.01
SA surface n=0.94 +0.01 independent of surface density of micro-asperities



A(P) relationship: role of elastic interactions ?

* Modified form of the GW model : Ciavarella’s model

Ciavarella, 2008

Indentation depth of the it" micro-asperity contact:
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Geometrical term

— With elastic interactions
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Calculated load dependence of the real contact area
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Departure of the A(P) relationship from linearity

* Lens curvature effect
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A P" RA surface R,=13 mm n=0.81
SA surface R=128 mm n=0.94



Micro-contacts spatial distributions

* SA Surface

P=0.02 N P=0.2 N P=0.5N

Predictions from Ciavarella’s model



Contact pressure distribution p(r)

* Experimentally : summation of the local micro-contacts forces p, within r and r+dr
(averaging over more than 20 realizations of the SA contacts )

* Theoretically:
— Ciavarella’s model

— Extension of the GW model to the contact of rough spheres
Greenwood and Tripp (1967)

Locally: GW model

p(r) ,a(r),n(r)
dS
GT model

- No short range elastic interaction between neighboring micro-asperities
- Long range elastic coupling coming from the curvature of the nominal surfaces



Contact pressure profiles p(r)

P=0.02 N P=0.2 N

1.5

.........

» Added tail to the Hertzian pressure distribution ( R5/902/3 ~ V Ro

No significant difference between Ciavarella’s and GT model

.

Short range elastic interactions does not affect the radial pressure distribution
What about the distribution of quantities from which p(r) derives?



Micro-contacts density and average micro-contact radius

Micro-contact density Average micro-contact radius
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GW model obeyed over most of the contact pressure range



Frictional properties of RA surfaces

Q(N)
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Interface shear stress cannot simply be transposed at all length scales



Conclusion / Outlook

* Normal contact of model randomly rough surfaces reminiscent to GW model

— Long range elastic interactions coming from the curved profile of the indenter
— Short range interactions between neighboring micro-contacts negligible

Experimental validation of the GW Williamson model
Extension to more realistic surface roughness including fractal surfaces ??

— Experiments with hierarchical surface roughness

* Preliminary friction results show that frictional stress measured at macroscopic
length scales cannot simply be transposed to multi-contact interfaces

— Dependence of rubber friction on surface stretching ?7?



