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Abstract
This study addresses the problem of the calculation of the elastic stress and
displacement field within isotropic layered media in frictionless contact with
rigid axisymmetric indenters. For a prescribed surface stress distribution,
the integral transform approach is recalled using a matrix formulation which
lends itself to generalizations to multilayered systems. It leads to an
analytical solution for the Hankel transform of the elastic field which can
readily be numerically inverted in the real space using available discrete
Hankel transform algorithms. As an example, the shear stresses induced by
the sphere indentation of a coated substrate are calculated as a function of
the geometrical confinement of the contact and of the compressibility of the
layer. The calculation was carried out using the surface pressure distribution
provided by an exact solution to the coated contact problem. In addition, the
elastic fields were also determined using an elliptic approximation of the
contact pressure distribution. It is shown that the interface shear stress is
strongly dependent on the details of the applied pressure profile close to the
edge of the contact. In confined layers close to incompressibility, the elliptic
approximation is found to result in a systematic overestimate of the interface
shear stresses.

1. Introduction

The contact problem of layered isotropic elastic solids is
of considerable interest in many areas of physics and solid
mechanics. Typical applications include tribological coatings,
magnetic data storage and layered composites. In all these
applications, a knowledge of the stress fields generated within
the film and at the interface is often required to predict
the performance and reliability of the coated systems. Of
particular importance is the determination of the shear stress
distribution at the interface where delamination processes
are often observed. From an historical perspective, the
theoretical analysis of elastic layered contacts was initially
based on integral transforms methods. Starting from the basic
equation of elasticity and writing the boundary conditions at
the interface between the layers, analytical expressions for the
Fourier or Hankel transforms of displacements and stresses

can be obtained for a prescribed distribution of the surface
stresses. The theoretical basis of this approach can be found in
a paper by Bufler [1], where formal expressions for the stress
and displacements fields are derived in the Fourier space in the
case of complete adhesion or no adhesion between the layers.
Early developments following these lines include the works of
Burmister [2–4], Harding and Sneddon [5], Barovich et al [6],
Chen [7] and Gupta and Walowit [8]. In all these studies,
specific solutions for the elastic field are established for normal
contact situations differing in the surface pressure distribution,
in the number of layers and in the two- or three-dimensional
nature of the problem. The integral transform approach was
also applied to the problem of the contact stresses generated
by Coulomb’s friction (e.g. [6, 9–11]). More recently, it was
also extended to adhesive contacts on layered substrates within
the framework of either the Johnson–Kendall–Roberts (JKR)
[12, 13] or Maugis–Dugdale (MD) [14] theories.
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Elastic field in a layered medium under contact loading

The integral transforms involved in these calculations
were initially evaluated using conventional numerical
integration methods. However, some obstacles were
encountered during this computation stage. As pointed out by
Chen [7], the integrals become rather slowly convergent at the
surface of the top layer near the boundary of the loaded region.
This difficulty is especially acute when the ratio of the layer
thickness to the contact width (or radius) becomes small. As a
consequence, calculations where the coating is highly confined
within the contact were systematically discarded despite their
practical importance in many tribological situations. These
computational limitations were, at least partly, circumvented
by using discrete transforms instead of integral ones [15–18].

A common feature of all the above-mentioned models
is that the stress and displacement fields are calculated for
a prescribed load distribution acting on the surface of the
layered substrate, which has to be obtained from a preliminary
resolution of the contact problem. However, the latter is a
mixed boundary value problem, where the surface stresses
are usually specified outside the contact area and the surface
displacement within the contact. The theoretical resolution
of this mixed boundary problem in layered contacts has long
been a source of major complications. In the absence of
any explicit closed-form solution, some early calculations of
the elastic field within the layers simply assume an arbitrary
semi-elliptical or uniform distribution of the surface normal
stress (e.g. in [6, 7, 19]). More refined approaches involve
approximate numerical solutions to the contact problem.
Following an idea initially introduced by Bentall and Johnson
[20], the unknown pressure distribution is represented as a
linear combination of a suitable set of basis functions whose
Fourier or Hankel transforms are known analytically [8–
10, 21, 22]. This set of basis functions is assembled to represent
the contact pressure distribution so that the displacement within
the contact area approximates the real displacement boundary
conditions in accordance with some arbitrary residual error
criterion. At the cost of an increased complexity in the
set of basis functions, this approach has been extended
to the calculation of the contact pressure induced by non-
axisymmetric rigid indenters including parabolic, quadrilateral
and triangular punches [7,23,24]. In addition, the efficiency of
these calculations was greatly improved by the use of iterative
FFT calculations [15, 18, 25].

Alternatively, asymptotic solutions to the contact problem
were also derived for limit cases such as the sphere and cone
indentation of a confined elastic layer lying on a rigid substrate
[26]. Another approximate approach by Yoffe [27] focuses
on the calculation of an additional stress field which would
compensate the inhomogeneity of the layered solid during its
indentation by a rigid flat punch. Using a method introduced
by Fabrikant [28], Schwartzer [29] also solved the contact
problem from an electrostatic like method of image, leading to
the calculation of the sum of an infinite series.

However, these complexities in the resolution of the
contact problem can be avoided by using some exact quasi-
analytical solutions to the frictionless contact problem of a
coated substrate with axisymmetric indenters [30, 31]. If
some appropriate auxiliary functions are introduced in the
formulation of the contact equations, it can be shown that the
mixed boundary conditions contact problem can be inverted in

the real space in the form of a single integral equation. The
later can readily be solved numerically in order to provide the
distribution of the surface normal stress. Then, it is possible
to obtain the elastic field in the material from these exact
solutions. In this paper, the integral transform formalism
is briefly recalled. As an application of this approach,
the distribution of the shear stress at the film/substrate
interface will be discussed for different levels of geometrical
confinement of the contact. It is shown that, when the contact
size is comparable to the film thickness, the use of a precise
contact pressure distribution is necessary to describe interfacial
stresses which may be responsible for delamination of the layer
under indentation.

2. Formulation of the model

As mentioned in the introduction section, stresses and
displacements at the surface of an elastically isotropic layered
medium under the action of surface displacements or stresses
have been often calculated. In this section, a short summary
of the usually employed methods is given. It is presented
using a matrix formulation of the equations [1] as it may
be easier to read and it lends itself to generalizations to
multilayered systems and to adhesive contacts. Moreover,
modern programming languages usually handle numerical
matrix computations, which may render the formula easy
to use. Explicit expressions of the matrices are given in
appendix A. The example of perfect adhesion between
the layer and the substrate is detailed. The aim is to
introduce a practical formalism for calculating the stress and
displacements in the material when a contact is established
with a rigid axisymmetric punch, assuming zero friction in the
contact area.

2.1. Harding–Sneddon formalism

It has earlier been recognized [5] that, under cylindrical
symmetry conditions (along z axis), an auxiliary function
G(ξ, z) can be used to express the mechanical fields in an
homogeneous linear elastic isotropic medium (shear modulus,
µ, Young’s modulus, E = 2µ(1 + ν), Poisson’s ratio, ν).
Indeed, Hankel transforms of stress and displacements can
be expressed as a linear combination of Hankel transforms
of G(ξ, z) and of its three first z-derivative. One can represent
these parameters using the vector

�(ξ, z) = [ξ 3G(ξ, z), ξ 2G′(ξ, z), ξG′′(ξ, z), G′′′(ξ, z)]�,

(1)

where prime symbols stand for z-derivatives. Then, defining,
a ‘state vector’ with four components

�(ξ, z) = [σzz|0(ξ, z), σrz|1(ξ, z), ξw|0(ξ, z), ξu|1(ξ, z)]�

(2)

one can express the elastic fields as

�(ξ, z) = M�(ξ, z), (3)

where M is a 4 × 4 matrix detailed in appendix A,
which only depends on the mechanical properties of
the elastic medium. u and w denote the radial and
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Figure 1. Schematic of the coated contact. Ei and νi denote
Young’s modulus and Poisson’s ratio, respectively, of the layer
(i = 1) and the substrate (i = 0).

vertical displacements, respectively. The last two non-zero
components of the stress tensor are obtained from the relation

[σθθ |0(ξ, z) + σrr |0(ξ, z), rσθθ |1(ξ, z) − rσrr |1(ξ, z)]�

= N�(ξ, z) (4)

(N is a 2 × 4 matrix detailed in appendix A). In these
expressions the notation

ϕ|q(ξ, z) =
∫ ∞

0
ϕ(r, z)Jq(ξr)r dr (5)

stands for the order q Hankel transform of the function ϕ(r, z)

(Jq(x) is the Bessel function of order q).
As G(ξ, z) obeys the differential equation

(
∂2

∂z2
− ξ 2

)2

G(ξ, z) = 0, (6)

it can be explicitly written in the form

G(ξ, z) = [A(ξ) + ξzB(ξ)] exp(−ξz) + [C(ξ)

+ ξzD(ξ)] exp(ξz), (7)

where A(ξ), B(ξ), C(ξ), D(ξ) are some functions of ξ .
The first order differential equation for the vector �(ξ, z)

corresponding to (6) can be written as

∂

∂z
�(ξ, z) = ξP�(ξ, z), (8)

which solution is

�(ξ, z′) = 	[ξ(z′ − z)]�(ξ, z), (9)

where
	(s) = exp[sP ], (10)

where P is a 4 × 4 matrix given in appendix A. Then,
propagation of the Hankel transforms of the mechanical fields
from one plane to another is easily described using this
propagator.

2.2. Coated substrate

Consider now an isotropic elastic layer (thickness t , Young
modulus E1, Poisson ratio ν1) on top of an isotropic elastic
semi-infinite substrate (Young modulus E0, Poisson ratio ν0).
Origin of z axis is taken at the surface (figure 1). Auxiliary
functions G0(ξ, z) and G1(ξ, z) (and their corresponding

vectors �0(ξ, z) and �1(ξ, z)) as well as matrices M0 and M1

can be defined in the substrate and in the layer, respectively.
Boundary conditions at the interface are expressed using
displacements and stress in both regions. In the case of
a perfect adhesion at the interface, continuity of the stress
components σzz and σrz and of the z and r displacements (w
and u, respectively) must be expressed. A ‘state vector’ can
be defined in the medium p (p = 0, 1) as

�p(ξ, z) = [σzz|0(ξ, z), σrz|1(ξ, z), ξw|0(ξ, z), ξu|1(ξ, z)]�.

(11)

When a perfect adhesion exists at the interface, boundary
conditions at the interface are expressed through the equation

�1(ξ, t) = �0(ξ, t), (12)

which represents the continuity of the displacements and stress.
This relation can be written as

M1 �1(ξ, t) = M0 �0(ξ, t). (13)

Finally, the state vector on the surface �1(ξ, 0) = M1�1(ξ, 0)

is connected to the the vector �0(ξ, t) through the propagation
relation (9) and boundary condition (13):

�1(ξ, 0) = M1	[−ξ t]M−1
1 M0 �0(ξ, t). (14)

Recalling the general form for G0(ξ, z) given in (7):

G0(ξ, z) = [A0(ξ) + ξzB0(ξ)] exp(−ξz) + [C0(ξ)

+ ξzD0(ξ)] exp(ξz), (15)

there exists a 4 × 4 matrix 
(ξz) such that

�0(ξ, z) = ξ 3
(ξz)V0(ξ, z), (16)

V0 (ξ, z) = [A0(ξ) exp(−ξz), B0(ξ) exp(−ξz),

C0(ξ) exp(ξz), D0(ξ) exp(ξz)]�. (17)

Therefore, (14) can be inverted as

ξ−3F �1(ξ, 0) = V0 (ξ, t) (18)

with
F = 
−1(ξ t)M−1

0 M1	[ξ t]M−1
1 .

In the substrate, non-divergence of the field for an infinite depth
imposes that the solution of the differential equation (6) is such
that C0(ξ) = D0(ξ) = 0. Thus, (18) can be written as

ξ−3 exp(ξ t)F �1(ξ, 0) = [A0(ξ), B0(ξ), 0, 0]�. (19)

Considering that the last two components of the vector
in the rhs of (19) are zero, two linear equations mixing
σzz|0(ξ, 0), σrz|1(ξ, 0), ξw|0(ξ, 0) and ξu|1(ξ, 0) can be
deduced:

��1(ξ, 0) = [0, 0]� , (20)

where � is the 2 × 4 sub-matrix obtained from the two lower
raws of F .

In a frictionless contact problem, σrz|1(ξ, 0) = 0.
Elimination of the radial displacement u|1(ξ, 0) between
the above two equations then leads to the following linear
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relation between the two remaining components, w|0(ξ, 0) and
σzz|0(ξ, 0):

w|0(ξ, 0) = X(ξt)

ξ
σzz|0(ξ, 0), (21)

which was first derived by Burmister [2] and rediscovered later
by others [10, 19, 32].

At this point, generalization of the method to a
multilayered system is straightforward: several propagations
and boundary condition matchings must successively apply.
As an example, for a two layer system (thickness t1 and t2),
the matrix F reads

F = 
−1[ξ(t1 + t2)]M
−1
0 M1	[ξ t1]M−1

1 M2	[ξ t2]M−1
2 ,

(22)

where indices 2 stand for the external layer. One can deduce
the matrix � as above and find a linear relation between normal
displacements and pressure analogous to (21). For a system
made of p layers of thickness tk (k = 1, . . . , p) on a semi-
infinite substrate,

F = 
−1[ξτ ]M−1
0 1 · · · p−1p, (23)

where τ = t1 + t2 + · · · + tp and k the propagator of the state
vector for the layer k reads

k = Mk	[ξ tk]M−1
k . (24)

2.3. Elastic fields in the material

If a distribution of external stress σzz(r, 0) and σrz(r, 0)

is prescribed at the surface, it is possible to deduce the
displacement and stress fields in the layered material using the
same formalism (note that in a frictionless contact problem,
σrz(r, 0) = 0). From relation (3) expressed at z = 0

M1�1(ξ, 0) = �1(ξ, 0) (25)

retaining the two first equations, one can define a 2 × 4 sub-
matrix M ′

1 obtained from the first two rows of M1:

M ′
1�1(ξ, 0) = [σzz|0(ξ, 0), σrz|1(ξ, 0)]�. (26)

Using the relation (20) under the form

�M1�1(ξ, 0) = [0, 0]� (27)

one can deduce

Q�1(ξ, 0) = [σzz|0(ξ, 0), σrz|1(ξ, 0), 0, 0]�, (28)

where Q is a 4 × 4 matrix built from the superposition of the
rows of M ′

1 and �M1. Thus

�1(ξ, 0) = Q−1[σzz|0(ξ, 0), σrz|1(ξ, 0), 0, 0]�. (29)

Hankel transforms of the displacements and stress in the layer
can be deduced from their expression in terms of �1(ξ, z),
using the propagation relation:

�1(ξ, z) = 	[ξz]Q−1[σzz|0(ξ, 0), σrz|1(ξ, 0), 0, 0]�. (30)

Once this vector is determined, all mechanical fields can be
readily deduced. We obtain directly,

[σzz|0(ξ, z), σrz|1(ξ, z), ξw|0(ξ, z), ξu|1(ξ, z)]�

= M1�1(ξ, z), (31)

[σθθ |0(ξ, z) + σrr |0(ξ, z), rσθθ |1(ξ, z) − rσrr |1(ξ, z)]�

= N1�1(ξ, z) for 0 � z � t. (32)

To get the mechanical fields in the substrate, it is necessary to
calculate �0(ξ, z) (with z > t) which is deduced from �1(ξ, t)

by taking into account the boundary conditions at the interface:

�0(ξ, z) = 	[ξ(z − t)]M−1
0 M1�1(ξ, t) (33)

= 	[ξ(z − t)]M−1
0 M1	[ξ t]

× Q−1[σzz|0(ξ, 0), σrz|1(ξ, 0), 0, 0]� (34)

and thus

[σzz|0(ξ, z), σrz|1(ξ, z), ξw|0(ξ, z), ξu|1(ξ, z)]�

= M0�0(ξ, z), (35)

[σθθ |0(ξ, z) + σrr |0(ξ, z), rσθθ |1(ξ, z) − rσrr |1(ξ, z)]�

= N1�0(ξ, z) for z � t. (36)

For a multilayered system, the procedure is similar for
the external layer, provided that � is determined from F ,
according to (23). For deeper layers, it is necessary to take
into account the boundary conditions as above.

2.4. Contact conditions

Contact imposes mixed boundary conditions at the surface:
Normal displacement is prescribed in the contact region while
normal pressure is zero out of this zone. None of the
Hankel transformsσzz|0(ξ, 0)norw|0(ξ, 0) are directly known.
For frictionless contacts on a coated substrate, a method
of resolution of (21) with mixed boundary conditions uses
auxiliary functions [30, 31]:

θ(s) =
∫ ∞

0
ξ dξw|0(ξ, 0) cos ξs, (37)

g(s) =
∫ ∞

0
dξσzz|0(ξ, 0) cos ξs. (38)

For given axisymmetric indenter shape and contact radius,
numerical resolution of an integral equation allows the
determination of both functions:

θ(s) = 2

π

∫ ∞

0

∫ ∞

0
du dξX(ξ t)g(u) cos ξu cos ξs. (39)

As the displacement is prescribed within the contact, it can be
shown that θ(s) is known in this region. As a consequence,
g(s) can be determined by numerical inversion of (39).
This technique also applies to multilayered materials, since
equations similar to (21) are obtained in this case. Thus, from
a cosine back-transform of g(s), one can deduce the Hankel
transform of the normal pressure σzz|0(ξ, 0). Then, elastic
fields in the materials are obtained from (30), (31) and (33).
As it is detailed in [12, 13], this approach can also be readily
extended to account for adhesive contact situations.
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2.5. Inversion of the Hankel transforms

Displacements and stresses in the direct space can be obtained
by numerical Hankel inversion using a fast inversion algorithm
(see, for example [33]). As in classical FFT techniques, special
care is necessary to adjust the different cut-off and the number
of points in order to get accurate results. It can be noted
in passing that the calculation of the elastic field does not
present any particular numerical problem when the layer is
incompressible (i.e. ν1 = 0.5), as opposed to finite element
simulations. In addition, the inversion of the Hankel transform
can be carried out accurately over a wide range of reduced
moduli and a/t ratios, as it will be shown below.

3. Numerical results

As mentioned in the introduction, the calculation of the elastic
stress field in coated contacts has often been carried out
assuming an elliptical pressure at the boundary [6, 7, 10, 19,
34]. However, some investigations indicate that the contact
pressure distribution at the surface of a layered substrate can
deviate significantly from such an elliptic profile [8, 23, 35].
The question thus arises to determine whether the elliptical
approximation of the contact pressure can result in significant
deviations from the calculated actual stress field within the
layered substrate. This question has been addressed in some
details by Gupta and Walowit [8] for a cylinder contact from a
comparison with the stress fields calculated using true pressure
profiles. For a moderate geometrical confinement of the layer
(i.e. for a ratio of the contact width to the thickness of the
layer close to unity), it was concluded by these authors that the
stresses calculated using an elliptical approximation do not
differ significantly from the actual ones. In this section, we
consider further the validity of the elliptical approximation in
the case of sphere indentation and for an extended range of
contact confinement. For that purpose, the stresses calculated
using an elliptical approximation will be compared with that
obtained using the actual contact pressure provided by the
exact solution to the contact problem [30, 31]. The analysis
will focus on the distribution of interface shear stress, which
is of importance for the prediction of delamination processes
in coated substrates.

In a preliminary step, the exact surface pressure profiles
have been determined using the approach derived by Perriot
and Barthel [31]. The calculations have been carried out for
the case of a soft layer adhesively bounded to a more rigid
substrate. The ratio of the reduced Young’s modulus of the
substrate, E∗

0 , to that of the layer, E∗
1 , was set between 10

and 100. As an example, a ratio of 50 would correspond
to the case of a glass substrate coated with a glassy polymer
layer. Changes in Poisson’s ratio of the layer have also been
considered, from 0.4 to an incompressible case (i.e. ν1 = 0.5),
while Poisson’s ratio of the substrate was kept constant and
equal to 0.2. The contact calculation has been repeated for
several ratios of the contact radius, a, to the film thickness, t

which is the input of the model. The corresponding indentation
loads are given in appendix B. In order to investigate the
validity of the elliptical approximation, the actual pressure
profiles were fitted to a power-law expression in the form

p(r) = p0(1 − r2/a2)n. (40)
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Figure 3. Distribution of the applied contact pressure for different
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In figure 2, the fit exponent, n, is shown as a function of
the contact confinement and for different values of the elastic
properties of the layer and the substrate. As it is expected, the
pressure profile is close to elliptical (i.e. n = 0.5) when the
confinement is low (a/t < 1), i.e. when the contact behaviour
is close to the Hertzian response of the layer. Similarly, the
profiles tend to an elliptical distribution when a/t is close
to 100 as a result of the increased Hertzian contribution of
the substrate. On the other hand, it comes out that the
contact pressure can differ significantly from the elliptical
approximation when the confinement of the layer is varying
between these two limit cases. This deviation is enhanced
when the ratio of the reduced modulus of the substrate to that
of the layer is enhanced. It is also especially marked in the
case of an incompressible layer, where exponents greater than
1.3 can be obtained when a/t is close to 10. Further evidence
of the non-Hertzian behaviour is also shown in figure 3 which
details the shape of some of the calculated pressure profiles in
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the incompressible case. This preliminary analysis therefore
shows that, depending on the geometrical confinement of
the contact and on the compressibility of the layer, the
contact pressure profiles can differ largely from the elliptic
assumption.

The sensitivity of the interface shear stress to the shape of
the contact pressure profile has subsequently been considered
in the case of an incompressible layer. As an example, the
calculation has been carried out for a confinement, a/t = 40
and for a ratio of the reduced moduli, E∗

0/E∗
1 = 50. The

maximum pressure corresponding to the elliptic approximation
was calculated in order to yield a contact load equal to
that determined from the exact contact solution at the same
a/t value. Figure 4 shows the corresponding shear stress
distributions within the layer. In both cases, the maximum
shear stress appears to be localized at the film/substrate
interface, close to the periphery of the contact. This description
is consistent with the general picture which can be drawn
for the squeeze of a confined layer between rigid substrates.
In such a situation, it turns out that the stresses at the
middle of the contact are of essentially hydrostatic nature,
whereas shear stresses develop at the periphery of the contact,
where the confinement is reduced [36]. In the case of the
elliptic approximation, the calculated shear stresses seem to
be higher and more strongly localized at the edge of the
contact than for the exact calculation. This is confirmed by
an examination of the shear stress profiles at the interface
(figure 5(a)). As compared with the actual stress profile, the
elliptic approximation results in a much sharper shear stress
peak whose magnitude is overestimated by a factor of 1.4
for the considered elastic properties and contact confinement.
As detailed in appendix B, this overestimate of the maximum
interface shear stress is observed when the a/t ratio exceeds
a value of about 10. It is also preserved when the ratio of the
reduced modulus of the substrate to that of the layer is varied
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Figure 5. Relation between (a) the interface shear stress in the case
of an incompressible layer (ν1 = 0.5) and (b) the applied contact
pressure distribution, for a/t = 40. R is the radius of the indenting
sphere. (——) exact solution, (· · · · · ·) elliptic approximation
(E∗

0/E
∗
1 = 50, ν0 = 0.2).

from 10 to 100. From an examination of the corresponding
surface pressure profiles (figure 5(b)), it transpires that the
sharpness of the shear stress peak close to the edge of the
contact is largely driven by the gradient of the applied pressure
in this region. The elliptic approximation indeed yield to
a much more pronounced contact pressure gradient close to
r = a. As far as one is interested in the interface shear stress,
the theoretical calculations therefore appear to be very sensitive
to relatively minor changes in the shape of the pressure
profile close to the edge of the contact. An exact contact
pressure distribution rather than an approximate solution such
as the elliptic profile should therefore be preferred as far
as one is concerned with interface shear stresses in layered
contacts.

4. Conclusion

A review of the literature is given on the contact problem
on a layered medium. The integral transform method for
determining the elastic field in a layered medium submitted
to an axisymmetric external pressure is presented under a
matrix formalism. The case of a single layer on top of a
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substrate, with perfect adhesion at the interface, is detailed.
When applied to a frictionless contact problem, the result
are shown to be sensitive to the accuracy of the pressure
profile. By comparison with an exact solution, shearing at
the interface is poorly described if an Hertzian pressure profile
is assumed. The detailed formalism may be useful to predict
delamination properties under indentation situations. It also
lends itself to straightforward generalization to a multilayer
case. In addition, this approach can readily be applied to
adhesive contacts, provided that the surface pressure profile is
obtained from a preliminary resolution of the adhesive contact
problem using one of the methods introduced in [13, 14]. An
example is provided in [13], where the mechanical field in an
adhesive layer has been calculated within the assumption of
short range adhesive forces.
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Appendix A

M =




0 −2µ(2 − ν) 0 2µ(1 − ν)
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0
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[
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Figure B.1. Non-dimensional indentation load as a function of the
ratio of the contact radius to the film thickness. Dotted and solid
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the reduced modulus of the substrate to that of the layer, E∗

0/E
∗
1 , is,

from bottom to top: 10, 25, 50 and 100 (ν0 = 0.2).

where S = sinh(s) and C = cosh(s),
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zr , at the interface as a
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Appendix B

All the calculations detailed in the text have been carried
out using the geometrical confinement of the contact, a/t ,
as an input parameter. In order to make useful these results
in practical indentation situations, figure B.1 provides the
relationship between a/t and the non-dimensional indentation
load, 3PR/4E∗

1a3.
Figure B.2 give the values of the maximum value of the

interface shear stress as a function of the contact confinement
and the elastic properties of the layer and the substrate. It can
be noted that the elliptic approximation of the surface contact
pressure overestimates the actual maximum interface shear
stress when the ratio of the contact radius to the film thickness
is greater than about 10. The magnitude of this difference
between the elliptic approximation and the exact calculation is
also enhanced when the ratio E∗

0/E∗
1 is increased or when the

layer is incompressible (i.e. ν1 = 0.5).
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