INTRODUCTION TO LINEAR ELASTIC FRACTURE MECHANICS

antoine.chateauminois@espci.fr

Theoretical strength of a perfectly ordered crystalline lattice

Stress concentration at the vicinity of an elliptical hole

Infinitely narrow elliptical cavity Remote unifomr tensile stress field σ_{A}

$$U(a) = -\pi a^2 \sigma_A^2 / E' + 4a\gamma$$

Crack length

Unstable configuration

Cleavage by a wedge

• Obreimoff's experiment (cleavage of mica)

$$U\left(a\right) = \frac{Ed^{3}h^{2}}{8c^{3}} + 2a\gamma$$

Crack length

Stable configuration

Stress-separation function for two atom planes

• Energy balance for crack extension

$$dU = dU_M + dU_S = -GdA + wdA$$

where
$$G = -\left(\frac{\partial U_E}{\partial A} + \frac{\partial U_P}{\partial A}\right)_P = \left(\frac{\partial U_E}{\partial A}\right)_{\delta}$$
 Strain energy release rate

$$\frac{\partial U}{\partial A} = 0 \qquad \qquad G = w \qquad \qquad \begin{array}{c} \mathsf{EQUILIBRIUM \ condition \ !!} \\ \mathsf{No \ dissipative \ processes \ !!} \end{array}$$

In most practical situations $G_c >> w$

.....

- Energy dissipation at the crack tip (plasticity, viscoelasticity) and/or in the bulk
- Dependence of actual fracture micro-mechanisms at the crack tip (process zone)

• The three modes of fracture

I : opening modeII: sliding mode (in plane shear)III: tearing mode (out of plane shear)

• Irwin slit-crack tip in rectangular and polar coordinates

$$\sigma_{ij} = \frac{K}{\sqrt{2\pi r}} f_{ij}(\theta)$$
$$u_i = \frac{K}{2E} \sqrt{\frac{r}{2\pi}} f_i(\theta)$$
$$K = \chi \sigma \sqrt{a}$$

K=f (geometry, applied loading)

Mode I crack loading

$$\kappa = (3-v)/(1+v), v' = 0, v'' = v,$$
 (plane stress)
 $\kappa = (3-4v), v' = v, v'' = 0,$ (plane strain).

Mode 1:

$$\begin{cases} \sigma_{xs} \\ \sigma_{yy} \\ \sigma_{zy} \end{cases} = \frac{K_1}{(2\pi r)^{1/2}} \begin{cases} \cos\left(\theta/2\right) \left[1 - \sin\left(\theta/2\right) \sin\left(3\theta/2\right)\right] \\ \cos\left(\theta/2\right) \left[1 + \sin\left(\theta/2\right) \sin\left(3\theta/2\right)\right] \\ \sin\left(\theta/2\right) \cos\left(\theta/2\right) \cos\left(3\theta/2\right) \\ \sin\left(\theta/2\right) \cos\left(\theta/2\right) \left[1 + \sin^2\left(\theta/2\right)\right] \\ \sin\left(\theta/2\right) \cos\left(\theta/2\right) \left[1 + \sin^2\left(\theta/2\right)\right] \\ \cos^3\left(\theta/2\right) \\ \sin\left(\theta/2\right) \cos^2\left(\theta/2\right) \\ \frac{\pi_{zs}}{\pi_{zs}} = r'(\sigma_{xs} + \sigma_{yy}) = r'(\sigma_{zz} + \sigma_{yy}) \\ \sigma_{zs} = \sigma_{ys} = \sigma_{zs} - \sigma_{\theta_s} = 0 \\ \begin{cases} u_r \\ u_y \end{cases} = \frac{K_1}{2E} \left\{\frac{r}{2\pi}\right\}^{1/2} \left\{ (1 + v) \left[(2\kappa - 1)\cos\left(\theta/2\right) - \cos\left(3\theta/2\right)\right] \\ (1 + v) \left[(2\kappa + 1)\sin\left(\theta/2\right) - \sin\left(3\theta/2\right)\right] \end{cases} \\ \begin{cases} u_i \\ u_\theta \end{cases} = \frac{K_1}{2E} \left\{\frac{r}{2\pi}\right\}^{1/2} \left\{ (1 + v) \left[(2\kappa - 1)\cos\left(\theta/2\right) - \cos\left(3\theta/2\right)\right] \\ (1 + v) \left[(2\kappa - 1)\cos\left(\theta/2\right) - \sin\left(3\theta/2\right)\right] \end{cases} \\ u_z = -\left(v'' z/E\right) \left(\sigma_{xx} + \sigma_{yy}\right) = -\left(v'' z/E\right) \left(\sigma_{zr} + \sigma_{\theta\theta}\right). \end{cases}$$

• Extension and closure of the crack increment CC'

Fixed grip (*u*=const) calculation of the strain-energy release:

$$\delta U_E = 2 \int_{a+\delta a}^a 1/2 \left(\sigma_{yy} u_y + \sigma_{xy} u_x + \sigma_{zy} u_z \right) dx$$
$$G = -\left(\frac{\partial U_E}{\partial c}\right)_u = K_I^2 / E' + K_{II}^2 / E' + K_{III}^2 (1+\nu) / E$$

plane strain : $E' = E/(1-\nu^2)$; plane stress : E' = E

Cohesive zone models

Dugdale, Barenblatt

- Non linear cohesive stress p(X,u) acting accross the walls of the slip
- Superposition of the K fields arising from the 'external' and 'internal contributions'

Physical origins of the cohesive zone

- Surface forces acting across the crack faces
- Platic deformation at the crack tip (Dugdale model)
- Crack bridging in crazes (polymer fracture)
- •

Fig. 9.9. Newly formed craze in thin slice cut from uncrazed bulk polystyrene; craze growing from left to right in a direction perpendicular to that of the uniaxial tensile stress (Courtesy D. Hull [106]).

Fig. 9.10. Electron micrograph of the central section of a craze grown as that in Figure 9.9 (Courtesy D. Hull [106]).

Fig. 9.11. Schematic diagram of the variation in polystyrene craze structure with increasing croze width; the angle at the tip of the craze is exaggerated and the scale in region d is larger than that of a to c. (Courtesy D. Hull [115]).

Hyp: $p(X, u)_{X \to c} \to 0$

Irwin

 $u(X)_{X \to c} \propto X^{(3/2)} \qquad \qquad u(X) \propto X^{1/2}$ $\epsilon_{X \to c} = du/dX \to 0 \qquad \qquad \epsilon_{X \to c} \to \infty$

Path independent integrals about crack tip : The J integral approach

Eshelby, Rice

$$U_M = U_E + U_P = \int_A \Phi dA - \int_S \chi \cdot \mathbf{u} ds$$
$$-dU_M/da = \int_S \left[\Phi dy - \chi \cdot (\partial \mathbf{u}/\partial x) \, ds \right] = .$$

J integral \rightarrow holds for any *reversible* deformation response *linear* or non *linear* \rightarrow path independent

Brittle materials : Hertzian fracture / I

Fig. 8.3. Cone crack in soda-lime glass. Photographed under load (P = 40 kN) from cylindrical punch, optical micrograph (block edge length 50 mm). Crack makes angle $\simeq 22^{\circ}$ to free surface. (After Roesler, F. C. (1956) *Proc. Phys. Soc. Lond.* **B69** 981.)

Fig. 8.2. Hertzian cone crack system. (a) Evolution of cone during complete loading (+) and unloading (-) cycle. (b) Geometrical parameters.

- (ii) Crack initiation at the edge of the contact
- (iii) Stable crack propagation
- (iv) Instable crack propagation : formation of the Hertzian cone
- (v) Stable propagation of the cone
- (vi) Crack closing during unloading

Maximum tensile stress:

$$\sigma_R = \frac{1}{2} (1 - 2\nu) p_m \approx 0.1 p_m$$

p_m = mean contact pressure

Point surface loading: sub-surface stress fields

Fig. 8.1. Boussinesq field, for principal normal stresses σ_{11} , σ_{22} and σ_{33} . (a) Stress trajectories, half-surface view (top) and side view (bottom). (b) Contours, side view. Unit of contact stress is p_0 , contact diameter 2*a* (arrow). Note sharp minimum in $\sigma_{11}(\phi)$ and zero in $\sigma_{22}(\phi)$, dashed lines. Plotted for v = 0.25. (See Johnson, K. L. (1985) *Contact Mechanics*. Cambridge University Press, Cambridge, Ch. 3.) Critical load for the propagation of the Hertzian cone crack

• Stress-based approach:
$$\sigma_R = \frac{1}{2}(1-2\nu)p_m \implies P_c \propto R^2$$

Experimentally $P_c \propto R$!

• Linear elastic fracture mechanics analysis approach

Non homogeneous stress field: the stress intensity factor is evolving as along the crack path

Fig. 8.30. Reduced plot of principal tensile stress σ_{11} vs distance downward along $\sigma_{22}-\sigma_{33}$ stress trajectory surface in Hertzian field. Asymptotes (dashed lines) correspond to bounds of uniform field $\sigma_{11} = \sigma_{\rm T}$ (Griffith flaw, $c \ll a$) and Boussinesq inverse-square field (Roesler cone, $c \gg a$). Note rapid stress falloff below surface, $\sigma_{11}/\sigma_{\rm T} < 0.1$ at s/a = 0.1. Plots for $\beta = 1$, $v = \frac{1}{3}$. (After Frank, F. C. & Lawn, B. R. (1967) *Proc. Roy. Soc. Lond.* A299 291; Lawn, B. R. & Wilshaw, T. R. (1975) *J. Mater. Sci.* 10 1049.)

Branchs(1) et (3) : instable propagation Branchs (2) et (4) : stable propagation

Crack of length c_c :Hertzian cone formation

Critical load

$$P_c \propto R \frac{K_c^2}{E^*}$$

Brittle materials : cone indentation

Vickers

- Plastic deformation
- Radial and median cracks

Residual stresses during unloading:

- \rightarrow Nucleation and propagation of median cracks
- \rightarrow Surface propagation of radial cracks

Fig. 8.7. Radial-median and lateral crack systems. (a) Evolution during complete loading (+) and unloading (-) cycle. Dark region denotes irreversible deformation zone. (b) Geometrical parameters of radial system.

Toughness measurements using indentation

$$\sigma_R Y \sqrt{a_c} = K_c$$

$$K_c = \chi \frac{P}{c^{3/2}}$$

 $\boldsymbol{\chi}$: non dimensional parameter dependent on Poisson's ratio

•<u>Vickers</u>

$$K_c = \xi \left(\frac{E}{H}\right)^{1/2} \frac{P}{c^{3/2}}$$

 $\xi = \xi_0 (\cot \Phi)^{2/3}$

 ξ_0 : non dimensional constant function of the strain distribution

Vickers indentation

Determination of fracture toughness from indentation testing

Half-penny crack $\sigma_R \sqrt{\pi a_c} = K_c$

• <u>sphere on flat</u> c >> a

$$K_c = \chi \frac{P}{c^{3/2}}$$

 χ Non dimensional parameter depending on Poisson's ratio

• Vickers, cone...

$$K_{c} = \xi \left(\frac{E}{H}\right)^{1/2} \frac{P}{c^{3/2}}$$
$$\xi = \xi_{0} \left(\cot \Phi\right)^{2/3}$$

 ξ_0 Non dimensional parameter depending on indenter's geometry

Vickers indentation

Bibliography

• Fracture mechanics

B. Lawn

Fracture of brittle solids, Cambridge Solid State Science Series, Cambridge University Press, 1993

D. Maugis Contact, adhesion and rupture of elastic solids, Springer, Solid State Sciences, 2000

• Fracture mechanics of polymer materials

J. G. Williams *Fracture mechanics of polymers*, Halsted Press, New York, 1984