INTRODUCTION TO LINEAR ELASTIC FRACTURE MECHANICS
Theoretical strength of a perfectly ordered crystalline lattice

\[\sigma = \sigma_{th} \sin \left(\frac{2\pi d}{\delta_0} \right) \]

\[\sigma_{th} \approx \frac{E}{10} \]
Stress concentration at the vicinity of an elliptical hole

- Inglis calculation

Uniformly stressed plate

\[\rho = \frac{b^2}{c} \]

\[\frac{\sigma_c}{\sigma_a} \approx 2 \frac{c}{b} = 2 \sqrt{\frac{c}{\rho}} \]
Crack in uniform tension

Infinitely narrow elliptical cavity
Remote uniform tensile stress field σ_A

Unstable configuration

$$U (a) = -\pi a^2 \sigma_A^2 / E' + 4a\gamma$$
Cleavage by a wedge

- Obreimoff’s experiment (cleavage of mica)

\[U(a) = \frac{Ed^3h^2}{8c^3} + 2a\gamma \]

Stable configuration
The Dupré work of adhesion:

\[w = \gamma_1 + \gamma_2 - \gamma_{12} \]

Homogeneous solid \(w = 2\gamma \)

Equilibrium conditions!
No chemistry!
Condition for equilibrium fracture: the Griffith criterion

- Energy balance for crack extension

\[dU = dU_M + dU_S = -GdA + wdA \]

where

\[G = -\left(\frac{\partial U_E}{\partial A} + \frac{\partial U_P}{\partial A} \right) \]

\[P = \left(\frac{\partial U_E}{\partial A} \right)_\delta \]

Strain energy release rate

\[\frac{\partial U}{\partial A} = 0 \]

EQUILIBRIUM condition !!

\[G = w \]

No dissipative processes !!

In most practical situations

\[G_c \gg w \]

- Energy dissipation at the crack tip (plasticity, viscoelasticity) and/or in the bulk
- Dependence of actual fracture micro-mechanisms at the crack tip (process zone)

......
Irwin's approach: Linear elastic crack-tip fields

- The three modes of fracture

 I: opening mode
 II: sliding mode (in plane shear)
 III: tearing mode (out of plane shear)

- Irwin slit-crack tip in rectangular and polar coordinates
Stress-intensity factors K

\[
\sigma_{ij} = \frac{K}{\sqrt{2\pi r}} f_{ij}(\theta)
\]

\[
u_i = \frac{K}{2E} \sqrt{\frac{r}{2\pi}} f_i(\theta)
\]

\[K = \chi \sigma \sqrt{a}\]

$K = f \text{ (geometry, applied loading)}$

Mode I crack loading

\[
k = (3-v)/(1+v), \quad \nu^\prime = 0, \quad \nu^\prime = v. \quad \text{(plane stress)}
\]

\[
k = (3-4v), \quad \nu^\prime = v, \quad \nu^\prime = 0. \quad \text{(plane strain)}
\]

\[\begin{align*}
\frac{\sigma_{zz}}{(2\pi r)^{1/2}} &= \frac{K_1}{2} \left\{ \cos(\theta/2) \left[1 - \sin(\theta/2) \sin(3\theta/2) \right] \right\} \\
\sigma_{yy} &= \frac{K_1}{2} \left\{ \cos(\theta/2) \left[1 + \sin(\theta/2) \sin(3\theta/2) \right] \right\} \\
\sigma_{z\theta} &= \frac{K_1}{2} \left\{ \cos(\theta/2) \left[\sin(\theta/2) \cos(\theta/2) \cos(3\theta/2) \right] \right\} \\
\sigma_{r\theta} &= \frac{K_1}{2} \left\{ \cos(\theta/2) \left[1 + \sin^2(\theta/2) \right] \right\} \\
\sigma_{rr} &= \frac{K_1}{2} \left\{ \cos^3(\theta/2) \right\} \\
\sigma_{\psi\psi} &= \frac{K_1}{2} \left\{ \sin(\theta/2) \cos(\theta/2) \cos(3\theta/2) \right\} \\
\sigma_{zz} &= \nu(\sigma_{zz} + \sigma_{yy}) - \nu^\prime (\sigma_{rr} + \sigma_{\psi\psi}) \\
\sigma_{yy} &= \sigma_{zz} - \sigma_{rr} = \sigma_{\psi\psi} = 0
\end{align*}\]
Equivalence of G and K parameters

- Extension and closure of the crack increment CC'

Fixed grip ($u=\text{const}$) calculation of the strain-energy release:

$$
\delta U_E = 2 \int_{a+\delta a}^{a} \frac{1}{2} (\sigma_{yy}u_y + \sigma_{xy}u_x + \sigma_{zy}u_z) \, dx
$$

$$
G = - \left(\frac{\partial U_E}{\partial a} \right)_{u} = \frac{K_{I}^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{E'}(1 + \nu) / E
$$

plane strain: $E' = E/(1 - \nu^2)$; plane stress: $E' = E$
Cohesive zone models

Dugdale, Barenblatt

- Non linear cohesive stress $p(X,u)$ acting across the walls of the slip
- Superposition of the K fields arising from the ‘external’ and ’internal contributions’
Physical origins of the cohesive zone

- Surface forces acting across the crack faces
- Plastic deformation at the crack tip (Dugdale model)
- Crack bridging in crazes (polymer fracture)
-
Barenblatt model: crack-opening profile

Hyp: \[p(X, u)_{X \rightarrow c} \rightarrow 0 \]
\[u(X)_{X \rightarrow c} \propto X^{3/2} \]
\[\epsilon_{X \rightarrow c} = \frac{du}{dX} \rightarrow 0 \]
\[u(X) \propto X^{1/2} \]
\[\epsilon_{X \rightarrow c} \rightarrow \infty \]
J integral → holds for any reversible deformation response linear or non linear → path independent
Brittle materials: Hertzian fracture / I

Sphere on flat contacts

(ii) Crack initiation at the edge of the contact

(iii) Stable crack propagation

(iv) Instable crack propagation: formation of the Hertzian cone

(v) Stable propagation of the cone

(vi) Crack closing during unloading
Hertz contact: surface tractions

Maximum tensile stress:

\[
\sigma_R = \frac{1}{2} (1 - 2\nu) p_m \approx 0.1 p_m
\]

\(p_m = \text{mean contact pressure} \)
Point surface loading: sub-surface stress fields

Stress trajectories

Contours

Fig. 8.1. Boussinesq field, for principal normal stresses σ_{11}, σ_{22} and σ_{33}.
(a) Stress trajectories, half-surface view (top) and side view (bottom).
(b) Contours, side view. Unit of contact stress is p_0, contact diameter $2a$ (arrow). Note sharp minimum in $\sigma_{11}(\phi)$ and zero in $\sigma_{22}(\phi)$, dashed lines. Plotted for $v = 0.25$. (See Johnson, K. L. (1985) Contact Mechanics. Cambridge University Press, Cambridge, Ch. 3.)
Critical load for the propagation of the Hertzian cone crack

- Stress-based approach:
 \[\sigma_R = \frac{1}{2} (1 - 2\nu) p_m \quad \Rightarrow \quad P_c \propto R^2 \]

 Experimentally \[P_c \propto R \]

- Linear elastic fracture mechanics analysis approach

 Non homogeneous stress field: the stress intensity factor is evolving as along the crack path

Fig. 8.30. Reduced plot of principal tensile stress \(\sigma_{11} \) vs distance downward along \(\sigma_{22} - \sigma_{33} \) stress trajectory surface in Hertzian field. Asymptotes (dashed lines) correspond to bounds of uniform field
\(\sigma_{11} = \sigma_T \) (Griffith flaw, \(c \ll a \)) and Boussinesq inverse-square field
(Roesler cone, \(c \gg a \)). Note rapid stress falloff below surface,
\(\sigma_{11}/\sigma_T < 0.1 \) at \(s/a = 0.1 \). Plots for \(\beta = 1 \), \(v = \frac{1}{3} \). (After Frank, F. C. &
Stability criterion for a Hertzian crack

Branches (1) et (3) : instable propagation

Branches (2) et (4) : stable propagation

Crack of length c_c : Hertzian cone formation

Critical load

$$P_c \propto R \frac{K_c^2}{E^*}$$
Brittle materials: cone indentation

Vickers

- Plastic deformation

- Radial and median cracks

Residual stresses during unloading:

→ Nucleation and propagation of median cracks

→ Surface propagation of radial cracks

Fig. 8.7. Radial–median and lateral crack systems. (a) Evolution during complete loading (+) and unloading (−) cycle. Dark region denotes irreversible deformation zone. (b) Geometrical parameters of radial system.
Toughness measurements using indentation

\[\sigma_R Y \sqrt{a_c} = K_c \]

- **Sphère / plan** \(c >> a \) \(P > P_c \)

\[K_c = \chi \frac{P}{c^{3/2}} \]

\(\chi \): non dimensional parameter dependent on Poisson’s ratio

- **Vickers**

\[K_c = \xi \left(\frac{E}{H} \right)^{1/2} \frac{P}{c^{3/2}} \]

\[\xi = \xi_0 \left(\cot \Phi \right)^{2/3} \]

\(\xi_0 \): non dimensional constant function of the strain distribution

\((E/H)^{1/2} P/c^{3/2} \) (MPa m\(^{1/2}\))

Toughness, \(T_0 \) (MPa m\(^{1/2}\))
Determination of fracture toughness from indentation testing

Half-penny crack \[\sigma_R \sqrt{\pi a_c} = K_c \]

- sphere on flat \(c \gg a \)

\[K_c = \chi \frac{P}{c^{3/2}} \]
\(\chi \): Non-dimensional parameter depending on Poisson’s ratio

- Vickers, cone...

\[K_c = \xi \left(\frac{E}{H} \right)^{1/2} \frac{P}{c^{3/2}} \]
\(\xi = \xi_0 \left(\cot \Phi \right)^{2/3} \)
\(\xi_0 \): Non-dimensional parameter depending on indenter’s geometry

\[(E/H)^{1/3} P/c^{3/3} \text{ (MPa m}^{1/3}) \]

Toughness, \(T_0 \) (MPa m^{1/3})
Bibliography

• Fracture mechanics

B. Lawn

D. Maugis

• Fracture mechanics of polymer materials

J. G. Williams