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Abstract
This study addresses the problem of adhesive contacts between layered
substrates and axisymmetric probes. A semi-analytical approach to adhesive
contacts has been developed as an extension of a model recently published
by Perriot and Barthel (2004 J. Mat. Res. 19 600–8) for the axisymmetric
elastic indentation of non-adhesive, coated substrates. In addition to the load
and penetration at equilibrium, the model allowed the derivation of the
shape of the free surface in the contact zone. The validity of the approach
was verified from experiments using contacts between acrylate films above
their glass transition temperature (Tg) and spherical glass lenses. When the
adhesive contacts were quenched below Tg, stable imprints were obtained
which allowed determination of the surface deformations of the films. The
latter were found consistent with the hypothesis of short range surface forces
which were embedded in the contact model. Deviations from theory in the
form of fingering instabilities at the periphery of the contact were observed
when the confinement of the film was increased. A calculation of the
stresses within the adhesive contacts indicated that these instabilities are
probably driven by the release of lateral constraints within the
confined films.

1. Introduction

Adhesive forces acting within contacts between thin compliant
layered surfaces are an important aspect in the mechanical and
tribological behaviour of many devices. Soft bearing surfaces
in artificial joint replacements or microelectromechanical
systems, pressure sensitive adhesives or experiments using
microprobe instruments such as the surface force apparatus
and the atomic force microscope are a few examples where the
response of the system is strongly affected by adhesion.

A major development in the contact mechanics of soft
adhesive surfaces is the Johnson–Kendall–Roberts (JKR)
theory which extends the Hertzian analysis to contacts under
the action of short range atomic forces [1]. This theory has been
shown to be valid in situations where the action of the adhesive
forces can be neglected outside the contact, which was found
to be a valid assumption for soft materials such as elastomers
[2,3]. Accordingly, a commonly called JKR test was developed

1 Author to whom any correspondence should be addressed.

which consists in compressing a soft elastic sphere against a
flat rigid surface or, conversely, a hard sphere against a flat soft
elastic medium. This test emerged as a convenient method
to determine the work of adhesion between materials from
a measurement of the relationship between the contact area
and the applied force within macroscopic contacts (see, for
example, [4, 5]). In addition, the JKR theory has also been
used as a basis to analyse more recent adhesion experiments
carried out at the submicrometric scale using AFM [6] or nano-
indentation [7, 8].

However, the JKR model was developed within the
assumption that the size of the contact remains small compared
with the dimensions of the contacting bodies and some
problems arise when it is applied to thin films. As the ratio of
the contact radius to the film thickness is increased, substrate
effects come into play which induce a deviation from the
JKR theory. Similar finite size effects were also reported
during JKR experiments when small elastomers lens were
used [9].
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Schull [10] reviewed current approaches to this finite
size problem within the context of the adhesion of compliant
incompressible films perfectly bounded to rigid substrates. As
in the classical JKR theory, the adhesion of thin films can be
treated from a thermodynamical standpoint, which relies on a
determination of the elastic energy stored within the contact.
This latter calculation requires making use of the compliance
of the non-adhesive coated contact. In the absence of any
tractable analytical solution to this contact mechanics problem,
it was initially proposed by Shull and coworkers to derive
empirical closed-form expressions for the contact compliance
from finite element (FE) simulations [11, 12]. More recently,
similar FE approaches to coated adhesive contacts have been
extended by Shridhar and Johnson [13–16] to the case of elastic
substrates considering both compressible and incompressible
coatings. These calculations especially showed that some of
the adhesion characteristics such as the pull-off force can be
influenced by the elastic properties of the contacting solids,
which is not the case for homogeneous contacts.

In the present study, an alternative analytical approach to
the mechanics of adhesive contacts between coated substrates
and rigid axisymmetric probes is developed as an extension
of a model recently developed by Perriot and Barthel [17] for
the non-adhesive case. The approach is developed within the
framework of the JKR assumption that surface forces do not
act outside the contact. From a determination of the elastic
energy stored within the system, we show that the adhesion
energy can very easily be incorporated within the theory in
order to provide a semi-analytical description of the adhesive
contact at equilibrium. This model is subsequently used to
analyse adhesion experiments between acrylate coatings and
spherical glass probes. In addition to the description of usual
contact parameters such as load and size, an original procedure
using the glass transition properties of the coating allowed
us to investigate the shape of the adhesive contacts. The
observation of a vertical junction of the surface of the film
to the rigid spherical indentor especially provided some direct
confirmation of the validity of the JKR assumption for the
investigated system. When the confinement of the film was
increased, some deviations from the theory were, however,
observed in the form of periodic instabilities at the periphery
of the contact.

2. Experimental details

A specific procedure was developed in order to obtain, at
room temperature, a stable imprint of the adhesive contact
formed at high temperature between a rubbery polymer and
a spherical probe. This methodology was based upon the
changes in the mechanical properties of polymers through
their glass transition zone. As detailed in figure 1, the test
procedure involved three successive stages. In a first stage, a
plano-convex glass lens is deposited at room temperature on the
surface of a glassy polymer film well below its glass transition
temperature, Tg. Under such conditions, the modulus of
the polymer is in the gigapascal range and no significant
adhesion occurs between the film and the lens. This system is
subsequently heated in an oven well above the glass transition.
As a consequence, the modulus of the polymer decreases in the
megapascal range, thus allowing an increase in the contact area

T < Tg

T = Tg + 50˚C

Quenched T <Tg

t glass

PR
film

(a)

(b)

(c)

Figure 1. Schematic description of the experimental procedure used
for the realization of imprints of adhesive contacts between
spherical glass lenses and acrylate films. (a) the lens rests on the
surface of the glassy film (modulus ∼ GPa), an elastic contact is
formed; (b) the contact is heated up above Tg, adhesion occurs
between the lens and the rubbery coating (modulus ∼ MPa); (c) the
adhesive contact is frozen in by cooling below Tg, the lens removed
in order to reveal the imprint of the adhesive contact.

under the action of adhesive forces. The system is maintained
under high temperature for a long time in order to achieve an
equilibrium state. The last stage consisted in cooling down the
adhesive contact at room temperature, i.e. below Tg. During
this cooling step, it was anticipated that any change in the
contact size should be slow enough to allow for a quench of
the adhesive contact below Tg. After removal of the glass
probe, it was therefore possible to analyse the ‘frozen’ shape
of the adhesive contact.

2.1. Materials

The experimental procedure required a polymer with a glass
transition above room temperature but not too elevated in
order to avoid thermal degradation of the specimens during
the development of the adhesive contact. These conditions
were fulfilled using a crosslinked acrylate polymer which was
obtained from the copolymerization of n-butylmethacrylate
(Acros Organics, purity 99%) and isobutylmethacrylate
(Acros Organics, purity 99%) in a 1.2 : 1.0 molar ratio.
The crosslinking agent was butanedioldiacrylate (Lancaster,
85%) with a concentration of 4 mol L−1. Irgacure® 819
(Ciba Specialty Chemicals) was used as an initiator for the
radical polymerization of the mixture under the action of
UV light.

The adhesive contacts experiments were first validated
using bulk specimens 10 mm in thickness. They were
polymerized from the monomer mixture between two float
glass plates which were treated with dichloromethylsilane
as a release agent. The reacting species were exposed to
UV light for nine hours. In order to ensure a homogeneous
polymerization through the thickness of the specimens, the
mould was continuously rotated under the UV lamp. After
removing the glass plates, additional heat treatment at 120 ◦C
under vacuum was carried out for 12 h in order to increase
the extent of reaction and to eliminate residual unreacted
monomers. The glass transition temperature of the resulting
polymer was 53 ◦C, as measured by DSC at 10 ◦C min−1. This
value remained unaffected when DSC specimens were taken
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from different locations though the thickness of the acrylate
plate, which indicates a good homogeneity of the sample. The
polymer gel fraction was found to be greater than 99% after
swelling in chloroform and subsequent drying of specimens.
The specimens were stored in a desiccator prior to use.

The films were realized using a similar procedure [18].
The specified film thicknesses (i.e. 15, 33, 80 and 110 µm)
were obtained using PET spacers which were inserted between
the two glass plates. Prior to polymerization, one of the glass
plates was treated with dichloromethylsilane as a release agent;
the other one was exposed under nitrogen to a 1% solution of 3-
methacryloxy-propyl-dimethyl chlorosilane in toluene in order
to promote a chemical bonding between the glass substrate and
the polymer film during polymerization. After polymerization,
the glass transition of the film was found to be 52 ◦C by means
of DSC at 10 ◦C min−1. The gel fraction of the film was greater
than 90%.

2.2. Contact experiments

Commercially available (Melles Griott, France) boro-silicate
glass lenses were used for the contact experiments. The radii
of curvature of the selected lenses varied between 3.1 and
77.8 mm and their weights between 0.038 and 2.62 g. From
interferometry measurement, the rms roughness of the lenses
was found to be of the order of 10 nm for a 500 × 500 µm2

surface. Prior to use, the lenses were cleaned in a 70 : 30
H202/H2SO4 solution and rinsed with distilled water.

Adhesive contacts were formed in a vacuum oven at
100 ◦C (i.e. about 50 ◦C above the glass transition temperature)
for one night in order to achieve equilibrium. A previously
reported dynamic viscoelastic analysis of the used crosslinked
acrylate [18] showed that, at this temperature, its low frequency
response is essentially of elastic nature with only a very
limited viscous dissipation at a scale of 10 s. Moreover, the
selected long equilibrium time can be assumed to allow for
the relaxation of any residual viscoelastic effects within the
adhesive layer.

The contact system was subsequently cooled down to
R.T. by opening the door of the oven. Once the contacts
were fully vitrified, the lenses were easily removed with
no detectable pull-off force. An assessment of the thermal
contraction of the film and of the glass sphere during
cooling showed that these effects should not modify by more
than 1% the actual shape of the adhesive contact. The
adhesive imprints were analysed using a non-contact optical
profilometer (MicroXAM, Scientec, France) with a height
resolution in the nanometre range.

3. Adhesive contact model

3.1. Solution for the adhesive contact problem

Let us consider the system depicted in figure 2, which consists
of an elastic substrate coated by an adhesive film in contact
with a rigid sphere. Ei and νi denote the Young’s modulus
and the Poisson’s ratio of the layer (i = 1) and of the substrate
(i = 0). An analytical model of the adhesive contact between
the compliant film and a spherical probe was derived as an
extension of an approach to the elastic indentation of coated
substrates by rigid indenters which was recently developed by

P,δδ
R

2a

E1,ν1

E0,ν0

E1,ν1,w t

Figure 2. Schematic description of the contact configuration
considered for the adhesion model. A rigid sphere of radius, R,
contacts an adhesive film of thickness, t , on an elastic substrate. Ei

and νi are, respectively, the Young’s moduli and the Poisson’s ratios
of the substrate (i = 0) and the layer (i = 1).

Perriot and Barthel [17]. The model is based on the expression
derived independently by Li and Chou [19] and by Nogi and
Kato [20] for the Green function for a layered substrate. Within
the framework of linear elasticity, these authors have derived
an expression relating the Hankel transforms of the normal
displacement, u(r), to that of the applied normal stress, σ(r),
at the surface of the elastic layer:

ū(ξ) = 2

E∗
1

X(ξ)

ξ
σ̄ (ξ), (1)

E∗
1 being the reduced modulus of the layer defined as E1/(1 −

ν2
1 )where E1 is the Young’s modulus of the coating. X(ξ) is

defined as

X(ξ) = 1 + 4bξte−2ξ t − abe−4ξ t

1 − (a + b + 4b(ξ t)2)e−2ξ t + abe−4ξ t
, (2)

a = αγ0 − γ1

1 + αγ0
, b = α − 1

α + γ1
, α = G1

G0
,

γ1 = 3 − 4ν1, γ0 = 3 − 4ν0,

where G0 and G1 denote the shear moduli of the substrate and
the layer, respectively and t is the thickness of the coating. In
equation (1) , the quantities in the form of q̄(ξ) correspond to
the 0th-order Hankel transform of the function q(r) defined as

q̄(ξ) =
∫ ∞

0
drrJ0(ξr)q(r)

with J0(x) the 0th-order Bessel function of the first kind.

Due to mixed boundary conditions, the Green function of
the coated substrate (equation (1)) cannot be used to provide
directly a solution in the real space. However, the use of
auxiliary functions developed in [21,22] was shown by Perriot
and Barthel [17] to allow the inversion of the contact problem
at low numerical cost. Two auxiliary fields, g and θ , were
introduced, which correspond to the cosine Fourier transforms
of the Hankel transforms of the normal surface stress, σ(r),
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and displacement, u(r), respectively.

g(s) =
∫ ∞

0
dξ σ̄ (ξ) cos(ξs), (3)

θ(s) =
∫ ∞

0
dξξ ū(ξ) cos(ξs). (4)

Alternatively, θ(s) can also be expressed as

θ(s) = δ − ϕ(s), s � a,

where δ is the penetration and ϕ(s) a known function of
the geometry of the axisymmetric indenter. In the case of a
spherical probe, it can be shown that ϕ(s) = s2/R.

By making use of equations (1), (3) and (4), Perriot and
Barthel were able to derive the following integral equation
relating, within the contact area (i.e. s � a), the known θ(s)

function to the unknown g(s) function

θ(s) = 2

E∗
1

g(s) +
∫ a

0
K(ρ, s)g(ρ)dρ, (5)

where K(ρ, s) is a symmetric Kernel (K(ρ, s) = K(s, ρ))

obtained from a cosine transform of X(x) = 2
E∗

1
(C(x) + 1).

K(ρ, s) = 4

πE∗
1

∫ ∞

0
X(ξt) cos(ξs) cos(ξρ)dξ, (6)

which can be evaluated through simple cosine transform.
The unknown penetration, δ, can easily be eliminated from

the problem by writing the integral equation (5) for s = a as

δ − ϕ(a) = 2

E∗
1

g(a) +
∫ a

0
K(ρ, a)g(ρ)dρ, (7)

which after subtraction from equation (5) gives

ϕ(a) − ϕ(s) +
2

E∗
1

g(a) = 2

E∗
1

g(s) +
∫ a

0
�K(ρ, a)g(ρ)dρ,

(8)
where �K(ρ, s) = K(ρ, s) − K(ρ, a).

The above integral expression provides the basis for
the determination of the normal surface stress beneath the
indenter. As compared with the solution developed in [17],
this expression incorporates two new features. First, the
unknown penetration, δ, has been removed from the integral
equation giving g(s), i.e. the normal stress distribution within
the contact. Secondly, the solution given by equation (8) takes
into account explicitly the value of g(s) for s = a, which was
implicitly discarded from the solution provided by Perriot and
Barthel (i.e. g(a) = 0).

It can easily be recognized that the assumption that
g(s), i.e. the contact stress, vanishes at the edge of the
contact corresponds to non-adhesive contact situations. This
description is similar to that introduced by Barquins and
Maugis [23] to extend Sneddon analysis of contact mechanics
to adhesive situations. However, the model can be extended to
equilibrium adhesive contacts if the relationship between g(a)

and the reversible work of adhesion is accounted for from a
calculation of the energy release rate. For that purpose, one
has to express that the elastic energy release rate is equal to

Dupré reversible adhesion energy, according to Maugis and
Barquins [24, 25].

This calculation is developed below, starting from the
following definition of the elastic energy Ue, stored within
the contact:

Ue = π

∫ ∞

0
u(r)σ (r)rdr. (9)

Using the properties of Hankel transforms, this equation can
be rewritten as follows in the transform space:

Ue = π

∫ ∞

0
ξ ū(ξ)σ̄ (ξ)dξ . (10)

From equations (3) and (4), it is possible to express the terms
ξ ū(ξ)and σ̄ (ξ) as cosine transforms of the auxiliary functions
g(s) and θ(s). If these cosine transforms are now substituted in
equation (10), one gets the following expression for the elastic
energy:

Ue = 2
∫ a

0
θ(s)g(s)ds. (11)

In order to determine the elastic energy release rate, the
derivative of Ue at constant penetration, δ, must be evaluated.
From equation (11), one gets

1

2

∂Ue

∂a

∣∣∣∣
δ

= θ(a)g(a) +
∫ a

0
θ(s)

∂g(s)

∂a

∣∣∣∣
δ

ds, (12)

as, at a fixed penetration δ, θ(s) is independent on the radius,
a.

Equation (5) therefore expresses the derivative ∂g(s)/∂a|δ:

∂g(s)

∂a

∣∣∣∣
δ

= −E∗
1

2

[
K(a, s)g(a) +

∫ a

0
K(ρ, s)

∂g(ρ)

∂a

∣∣∣∣
δ

dρ

]
.

(13)

If the expressions for θ(s) (equation (5)) and ∂g(s)/∂a|δ
(equation (13)) are now replaced in equation (12) and if the
symmetry of the kernelK(ρ, s) is accounted for, the expression
of the elastic energy release rate, G, simplifies to

G = 1

2πa

∂Ue

∂a

∣∣∣∣
δ

= 2

πaE∗
1

g2(a). (14)

At equilibrium, the use of the Griffith criterion, G = w [24,25],
yields

g(a) =
√

πwaE∗
1

2
, (15)

where w is the Dupré reversible thermodynamic work of
adhesion.

From equation (14), it comes out that g(a) is formally
equivalent to the mode I stress intensity factor describing—
within the framework of linear elastic fracture mechanics—
the stress singularity induced by the adhesive forces at the
periphery of the contact (KI = 2/

√
πag(a) under plane strain

conditions). It is worth noting that the obtained expression for
KI in a coated contact is strictly equivalent to that derived
by Maugis [26] in the case JKR contacts on semi-infinite
bodies. In other words, the stress singularity associated with
the adhesion of the coated substrate appears to be only a
function of the layer’s modulus and not of the substrate’s elastic
properties. From a physical point of view, this result can be
viewed as a consequence of the classical JKR assumption that
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the adhesive forces vanish at the periphery of the contact.
Then, the characteristic length associated with the effect of
adhesion vanishes. As a consequence, the stress singularity
associated with adhesion therefore becomes a purely local
effect which only affects the layer. It is therefore identical to
that derived for JKR contact by Maugis [26] from an extension
of the Sneddon solution [27] for the frictionless axisymmetric
Boussinesq problem.

According to (8) and (15), the solution for the adhesive
contact of a layer on a substrate is, therefore, obtained from
the following integral equation:√

2aw

E∗
1

+ ϕ(a) − ϕ(s) = 2

E∗
1

g(s) +
∫ a

0
�K(ρ, s)g(ρ)dρ,

(16)
which can readily be solved numerically [17] in order to
provide g(s) values and the associated adhesive force

P = 4
∫ a

0
g(s)ds. (17)

Once the function g(s) is calculated, the penetration, δ, can be
easily determined from equation (7).

In addition to the penetration and the load, this approach
allows calculating the vertical displacement, u(r), of the
surface. From equation (4), u(r) can be related as follows
to θ(s) in the real space:

θ(s) = d

ds

∫ ∞

s

dr
ru(r)√
s2 − r2

, (18)

which can be inverted as:

u(r) = π

2

∫ r

0
ds

θ(s)√
r2 − s2

, (19)

where the function θ(s) can be determined for every value of
the space coordinate s using the calculated values of g(s) in
equation (7). Putting s = r cos α, equation (14) turns into the
following integral:

u(r) = π

2

∫ π/2

0
dαθ(r cos α), (20)

which can easily be evaluated numerically.

3.2. Implementation of the model

The details of the numerical procedure used to solve the
adhesive contact problem are similar to that reported in [17],
except for the value of g(a) which was calculated from
the layer’s elastic properties and the adhesion energy using
equation (12). As a verification, calculated adhesion curves
relating the contact radius to the applied load were compared
with the FE method model recently derived by Sridhar and
Johnson [13–15]. According to Maugis [3], the load and the
penetration were expressed in the following non-dimensional
form:

P̄ = P/3πwR ā = a

(
4E∗

1

9πwR2

)1/3

,
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Figure 3. Theoretical variation of the non-dimensional contact
radius with the non-dimensional load for a range of values of the
adhesion parameter. The symbols correspond to data calculated
using the semi-analytical model developed in this paper; the solids
lines correspond to the F.E.M results obtained by Sridhar and
Johnson using the same values of the adhesion parameter (data taken
from [14]). (ν0 = 0.2, ν1 = 0.4999 and E∗

0/E
∗
1 = 109.39).

and the adhesion curves were calculated for various values
of an adhesion parameter, α, defined as a non-dimensional
measure of the work of adhesion:

α =
(

2wR2

E∗
1 t3

)1/2

.

In figure 3, it can be seen that the present analytical calculations
agree perfectly well with the previous FEM calculations by
Sridhar and Johnson, which supports the validity of our model.
It can also be pointed out that, for all the experimental situations
addressed in this study, the theoretical calculations indicated
that deformation of the substrate was negligible as compared
with that of the layer.

4. Experimental results

4.1. Adhesion of bulk specimens

In a preliminary stage, the experimental procedure was
validated using bulk acrylate specimens for which it was
possible to apply the well established JKR theory. Once the
contacts were cooled at room temperature, well distinguishable
circular imprints were observed on the surface of the specimens
(see insert in figure 4). The associated contact radii were
measured for a set of glass lenses. Each of these lenses was
characterized by a different radius of curvature which makes
it impossible to reduce all the data in the usual a3(P ) plot.
However, the JKR theory indicates that all the experimental
data should rescale onto a single relationship if a3/R2 is plotted
as a function of P/R:

a3

R2
= 3

4E∗
1

[
P

R
+ 3πw +

√
6π

P

R
+ (3πw)2

]
. (21)

The data reported in figure 4 show reasonable agreement with
this assumption. From a least-square fit of the data points
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P / R (N.m-1)

a
3 /

R
2
(m

 x
 1

0-6
)

4

3

2

1

0
2.01.51.00.50.0

1 mm

Figure 4. Reduced contact radius, a3/R2, versus reduced contact
load, P/R, for bulk acrylate specimens. These experimental data
were obtained using glass lens with radii of curvature, R, varying
between 3.1 and 77.8 mm. The solid line corresponds to a
theoretical calculation using the JKR theory (equation (21)) with
E∗

1 = 0.9 MPa and w = 42 mJ m−2. Insert: optical microscope
photograph of an adhesive imprint.

with equation (21), it was found that E1 = 0.67 ± 0.05 MPa
(assuming ν1 = 0.5 as it is expected in the rubbery regime
where the imprint is realized) and w = 42 ± 6 mJ m−2.
The value of the elastic modulus, E1, is in close agreement
with independent measurements using dynamic mechanical
thermal analysis [18]. No independent estimate was available
for the adhesion energy of the glass/acrylate system under
investigation, but the obtained value is in reasonable agreement
with the published data for acrylate/glass systems [28].

It is worth noting that in the presented experiments, contact
radius remains much less than the spherical lens radius. Then
simple JKR theory for paraboloidal indenters should apply. No
correction is expected as would be the case for larger contact
sizes [5, 29]. For the experiments on thin layers described
below, the soft elastic film lies on a rigid substrate which
enhances considerably the overall contact stiffness. As a result,
the measured contact radii are, again much less than the radii
of the spheres.

4.2. Adhesion on film specimens

As a first analysis of the film systems, the radii of the adhesive
contacts were measured from optical observations of the
imprints. This set of data was used to estimate the value of the
ratio w/E∗

1 of the films. From a least square procedure using
the adhesive contact model, an average value was obtained
(w/E∗

1 = 38 nm) which is consistent, with although slightly
lower than, the bulk value (w/E∗

1 = 47 nm).
A more refined analysis of the adhesive contacts was

subsequently carried out using the recorded surface profile.
Figure 5 shows two characteristic surface profiles of contact
cross sections which were obtained under different geometrical
confinements (a/t = 4.5 and a/t = 9.1). In both cases it can
be seen that the junction of the elastic solid to the rigid spherical
indenter is nearly vertical. Such an observation is consistent
with the hypothesis of short range adhesive forces, which is
embedded in the present adhesion model like in classical JKR
theory.
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Figure 5. Theoretical (· · · · · ·) and experimental (——) surface
profiles in the adhesive contact region for different confinement
situations. (a) t = 79 µm, R = 12.9 mm, a/t = 4.6 (b) t = 15 µm,
R = 5.2 mm, a/t = 9.0.

It was attempted to simulate these two experimental
profiles using the adhesive contact model. The theoretical
results reported in figure 5 show that an adjustment of the
value of w/E∗

1 close to the previously determined average
value allows a very accurate simulation of the deformation
within the contact zone. It can especially be seen that the
adhesive model can simulate the progressive formation of a
circular depression of the free surface close to the edge of the
contact when the confinement of the contact is large.

4.3. Fingering instabilities in confined contacts geometries

Using glass lenses with larger radii of curvature, it was possible
to enhance the level of geometrical confinement within the
contact, i.e. the ratio a/t . Interestingly, it was observed that
doing so resulted in the apparition of instabilities at the edge
of the contact in the form of wavy undulations. An example
is shown in figure 6 for an a/t ratio close to 40, where the
wavelength of the instability is about seven times the film
thickness. In situ observations of the contact zone during
heating showed that these instabilities are generated during
the formation of the adhesive contact.

Such observations are reminiscent of the meniscus
instabilities which have been reported by Ghatak et al [30–32]
in experiments with elastomeric films confined between a plane
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100 µm

Figure 6. Generation of contact instabilities during the development
of an adhesive contact under confined conditions. (R = 51.8 mm,
t = 15 µm). The contact confinement, a/t , is about 40.

rigid glass and a thin curved glass plate. In these studies, the
authors found that the wavelength, λ, of the instabilities is
proportional to the film thickness, t , with λ/t ∼ 4, which is
close to the value corresponding to figure 6. In their papers,
Ghatak et al argued that the periodic deformation of the contact
line can be explained by considering fluctuations of the surface
forces, according to an argument initially introduced by Mönch
et al [33].

A different analysis was developed by Schull and co-
workers to analyse fingering instabilities which develop
in confined elastic layers in tension within JKR contacts
[34]. Extending to elastic solids the classic Saffman–Taylor
analysis of flow instabilities in confined Newtonian fluids
[35], these authors stated that fingering instabilities are driven
by the release of lateral constraints within confined layers.
Accordingly, the conditions for the occurrence of fingering
were assumed to be related to the sign of the normal pressure
gradient close to the periphery of the contacts. Some FE
simulations for a flat punch adhesively bonded to a film
under tension supported these hypotheses. These calculations
showed that, for confined geometries, the normal pressure
near the contact edge tends to increase in the direction of
the interfacial motion, which is one of the requirements for
Saffman–Taylor instabilities to occur. On the other hand, the
pressure gradient was found to be negative toward the centre of
the contact for low confinements, where no instabilities were
observed.

A similar analysis for the JKR contacts under
consideration is presented below from a calculation of the
adhesive contact stresses within the layer. The latter was
carried out using an approach close to that described by
Li et al [19], which is detailed in appendix 1. As a first
qualitative approach, the computations have been carried out
for a zero normal force. In figure 7, the calculated normal
stress distributions have been averaged through the thickness
of the layer and reported for a/t = 3 , a/t = 12. In passing,
it can be noted that these averaged stresses does not show
any singularity at the edge of the contact, as opposed to the
surface stress distribution (figure 7). This is due to the fact
that the stress singularity at the edge of the contact varies as
1/

√
ρ, ρ → a [3], which integral over the thickness of

the layer is finite. In figure 7, it can be seen that increased
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Figure 7. Calculated average normal stress, σa
zz, through the

thickness of the layer in an adhesive contact with a sphere under
zero normal load. (a) a/t = 3; (b) a/t = 12.
(E∗

0/E
∗
1 = 8 × 104, w/E∗

1 = 40 nm, ν0 = 0.2, ν1 = 0.5).The
calculation shows that confinement is associated with a change in
the sign of the stress gradient close to the edge of the contact which
is a criterion for the occurrence of Saffman–Taylor like instabilities.

levels of confinement result in a change in the sign of the
normal stress gradient close to the edge of the contact. For
a/t ratios greater than about 10, the normal stress near the
contact edge tends to increase toward the centre of the contact,
which fulfils the instability criterion proposed by Schull et al
following the Saffman Taylor analysis. This stability analysis
is consistent with the experimental observations which showed
that instabilities appeared for a/t ratio greater than about 10.
This analysis cannot, however, be extended to the regime where
fingering instabilities are fully developed. Nevertheless, it
seems realistic to assume that the lateral size of the fingers
should be of the order of magnitude of the thickness of
the layer as the instabilities are driven by the release of
the lateral constraints associated with confinement. It is
worth noting that in the previous experimental investigations,
fingering instabilities were observed under the action of tensile
forces. The present theoretical calculations and experimental
observations show that such instabilities can also be generated
under a vanishing or slightly compressive contact load.

5. Conclusion

In summary, a semi-analytical model for the adhesive contact
of a rigid indenter on a coated substrate is presented. The
resulting integral equation (equation (16)) can be rather
easily numerically solved. This description is validated by
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comparison with existing FEs calculations. An experimental
validation is also proposed. By cooling down adhesive contact
of spherical indenters on coated polymer substrates, it is
shown that corresponding imprints can be frozen. They are
shown to closely fit the shapes predicted by the model. It
could, therefore, be envisaged to use these simple experiments
to determine the adhesive and elastic properties of coated
substrates. This would require, however, a careful analysis of
the sensitivity of the contact behaviour to small fluctuations
in the Poisson’s ratio close to incompressibility. Previous
theoretical calculations by Ganghoffer and Gent [11] have
shown that this issue can be critical when the ratio of the contact
radius to the film thickness exceeds a few unities.

When the radius of the spherical indenter is large, non-
axisymmetric imprints are observed. The corresponding
instability corresponds to the release of the elastic energy
stored in the highly confined region of the film under the
contact. These observations complement previous results
reported by Schull et al [34] and Gathak et al [30–32] in
the sense that they show that contact instabilities in confined
geometries can, not only be observed under the action of tensile
forces, but also for compressive or vanishing contact forces.

Thus, it seems important to extend the present study of
the equilibrium adhesive contact on a coated substrate by an
analysis of its stability. Moreover, as in the JKR model, a zero
range adhesive force is included in the model. Situations which
have been experimentally considered appear to correspond to
this hypothesis. However, it can be anticipated that, either for
thinner films or more rigid ones or smaller indenter radii such
an assumption should fail, as it is similarly the case on semi-
infinite substrates [26]. This limitation of the model should be
further analysed.
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Appendix 1

The calculation of the stresses within a layered adhesive
contact was based on an approach similar to that developed
by Li et al [19]. Taking into account the continuity of stresses
and displacements at the film/substrate interface, analytical
expressions were derived for the Hankel transforms of the
stresses within the film. In this problem, the Hankel transforms
of the surface stresses are taken as boundary conditions. In the
case of frictionless adhesive contacts, this approach, therefore
requires a knowledge of the Hankel transform of the normal
surface pressure, which can be determined from a preliminary
resolution of the adhesive contact problem using the procedure
described in section 3.1.

When considering the direct inversion of the stress
expressions in real space using a discrete Hankel transform
algorithm, some numerical difficulties arise due to the
existence of a stress singularity at the edge of the adhesive
contact. This problem was circumvented by splitting the
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Figure 8. Calculation of the normal surface stress components
corresponding to the terms g(a) and �g(r) in equation (22).
(P = 0, E∗

0/E
∗
1 = 8 × 104, w/E∗

1 = 40 nm, ν0 = 0.2, ν1 = 0.5).
The stress distribution corresponding to g(a) (· · · · · ·) has been
calculated analytically using the solution to the classical Boussinesq
problem. The stress component associated with �g(r) (· · · · · ·) was
inverted in real space using the discrete Hankel transform algorithm
described in [36]. The normal surface stress (——) is obtained by
summation of these two stress components.

function g(r), i.e. the integral transform of the normal stress
(cf equation (3)), into two separate components:

g(r) = g(a) + �g(r), (22)

where the constant term g(a) corresponds to the classical
Boussinesq problem of the frictionless indentation of a
homogeneous semi-infinite body by a flat-ended cylindrical
punch. This term, which contributes to the normal stress
in an analytically known manner [27], incorporates the
stress singularity associated with the adhesive contact. The
additional term, �g(r), vanishes for r = a, which corresponds
formally to a non adhesive contact situation. As a result, no
singularity is obtained when the associated stress components
are inverted in real space. We used here the discrete Hankel
transform algorithm developed by Guizar-Sicairos et al [36].

This procedure is illustrated in figure 8, where the surface
normal stress components corresponding to g(a) and �g(r)

have been reported separately. The surface normal stress is
simply given by the addition of these two terms.
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