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ABSTRACT: Amorphous polymers in their glass transition regime can be
described as a tiling of nanometric domains. Each domain exhibits its own
relaxation time, which is distributed over at least four decades. These domains
are known as dynamical heterogeneities. This article describes the mechanics of
amorphous polymers using a stochastic continuum mechanics model that
includes their heterogeneous dynamics. Solving this model both by finite
elements and by using a self-consistent method, we find a viscoelastic relaxation
spectrum quantitatively similar to an experimentally measured spectrum in a
polymer. We show evidence that elastic couplings between domains control the
stress relaxation after a step strain and result in a narrowing of the long-time
region of the viscoelastic spectrum (as compared to that of dynamical
heterogeneities).

■ INTRODUCTION

A glassy polymer is characterized by a dense and highly
disordered packing of monomers. Disorder results from
structural constraints, namely excluded volume, but also
connectivity between monomers, entanglements, or cross-
links. The monomers rearrange collectively by small domains,
hopping from one configuration to another, or one cage to
another in the Eyring model.1 As shown two decades ago,2−9

one consequence of the structural disorder is the strong
heterogeneity of polymer chain dynamics at a nanometric scale.
Molecular dynamics (MD) simulations and experiments using
photobleaching have shown that the mechanical properties of
glasses are heterogeneous at a nanometric length scale.10−14

More precisely, the rearrangement rate varies by orders of
magnitude from one domain to another.15

At high temperature, in the melt regime, the rearrangement
times of nanometric domains are short compared to the time of
the experiment. The mechanical response of dense polymer
chains is thus controlled by long-range topological constraints,
such as entanglements or cross-links. and is characterized by an
elastic modulus of the order of 1 MPa.
At low temperature, in the glassy state, the experimental time

is longer than local relaxation times. The dynamics of polymers
is controlled by rare rearrangements of monomers. In this range
of temperatures, elasticity results from interactions between
monomers and the elastic modulus is of the order of 1 GPa.
Close to the glass transition, the situation is more complex

because the polymer system is composed of nanometric
domains having relaxation times either shorter or longer than

the experimental time. The former can differ by at least four
orders of magnitude between two neighboring domains.2

For instance, during a step strain mechanical test, each
domain releases its stress with a characteristic time, which can
be significantly different from that of its neighbors. During its
relaxation, the local modulus of each domain will typically vary
by three orders of magnitude from 1 GPa to 1 MPa. As a
consequence, the local stresses are highly distributed within the
sample, depending on the local value of the relaxation time.
The corresponding macroscopic stress relaxation should be
influenced by this huge dynamical disorder. However, its
quantitative description is still a challenge.
This work aims at evidencing the relation between local

stress relaxation and the macroscopic viscoelastic modulus
measured in the linear regime close to the glass transition. An
important issue concerns the arrangement of mechanical
heterogeneities and its evolution during macroscopic relaxation.
The complexity of the situation originates in the elastic
coupling between the domains interacting together elastically.
This coupling may lead to complicated local stress relaxations
partly controlled by the initial dynamical arrangement as
observed by Yoshimoto et al.18 For instance, stress localization
may occur as a result of mechanical couplings. A better
understanding of the effect of dynamical heterogeneities on the
macroscopic response of a polymer glass would be helpful for

Received: May 27, 2015
Revised: July 24, 2015
Published: September 3, 2015

Article

pubs.acs.org/Macromolecules

© 2015 American Chemical Society 6690 DOI: 10.1021/acs.macromol.5b01138
Macromolecules 2015, 48, 6690−6702

pubs.acs.org/Macromolecules
http://dx.doi.org/10.1021/acs.macromol.5b01138


the development of new highly heterogeneous polymer
systems.
Mechanical properties of glasses have been studied by

molecular dynamics simulations.12 However, MD analysis is
typically restricted to time scales shorter than 1 μs and sample
sizes smaller than 100 domains. Because the full relaxation of a
glassy polymer occurs over macroscopic times larger than 1 s,
MD simulations therefore do not allow one to study the
mechanical response of a polymer relaxing from its glassy to its
rubber state. Recently, Dequidt et al.15 have developed a more
appropriate model using a coarse-grained Monte Carlo
(CGMC) simulation technique. This CGMC model is based
on the “percolation of free volume distribution” (PFVD)16,17,19

theory and includes the dynamical heterogeneities that are
induced by the density fluctuations existing in a polymer glass.
In this CGMC model, local stresses intermittently relax from
the glassy to the rubber state in such a way that physical aging is
taken into account. This model gives a good description of the
mechanical properties of confined polymer films close to their
glass transition.
Previous works have not analyzed the spatial correlations of

the stress field that take place during the macroscopic relaxation
of the glassy system. Nevertheless, these local stress correlations
control the macroscopic response of a glassy polymer. In order
to get new insight on the relaxation processes occurring at a
local scale, we have developed a numerical technique that is
faster than the CGMC model. In this work, we use a finite
element method (FE) because this method has been optimized
for decades in order to solve mechanical response of
heterogeneous systems.20−22 For that purpose, we imple-
mented statistical physics of the α relaxation of a polymer glass
in a finite element computation. We show in this paper how to
easily implement the statistical behavior associated with glass
transition in finite element codes. This finite element approach
takes the intrinsic dynamical heterogeneities existing in a
polymer into account. For that purpose, we assume a
Maxwellian viscoelastic response for each domain considered
individually. As a consequence, the domains undergoing a
constant strain would relax from a glassy modulus to a rubbery
modulus following a single exponential decay. In the model
presented in this article, we choose to keep constant the
intrinsic relaxation time of each domain during the whole
macroscopic stress release. The physical aging processes are
thus not taken into account. They will be included in a further
development of this model.
Using this new numerical method, we have modeled polymer

mechanics at the nanometric scale of dynamical heterogeneities.
In particular, we were able to analyze macroscopic stress with
respect to the distribution of local stresses and their spatial
correlation at each macroscopic relaxation time. In order to get
insight into the spatial arrangement of domains’ relaxation, FE
results were compared to the ones given by a self-consistent
mechanical (Palierne) model (SC). In this paper, we present
the resulting predictions for a two-dimensional (2D) plane
strain geometry.
This paper is organized as follows. In the first section, details

of the FE and SC numerical methods we used are presented.
We have studied the sensitivity of the FE technique in this
statistical physics problem, particularly in the case of polymer
glasses in which intrinsic relaxation time distributions are very
broad (over 8−16 decades). The macroscopic stress relaxations
predicted by FE simulations are reported in a second section.
Their shape strongly depends on the width, σ, of the intrinsic

time distribution and on the mechanical contrast, Gg/Gr,
between the glassy and the rubber state. FE simulations are
compared to the macroscopic response predicted by a mean
field approach. We show that, in the glass transition zone, mean
field approach overestimates macroscopic stress relaxation for
heterogeneous systems. This discrepancy between FE and SC
predictions reveals the existence of a complex time evolution of
the stress field during the macroscopic relaxation in polymer
glasses. By analyzing the corresponding local stress field
predicted by FE simulations at each step of the macroscopic
relaxation, we have identified four main steps in the relaxation
kinetics of local stresses and their spatial organization within
the sample. The role of elastic couplings on the stress relaxation
of domains is discussed in the third section. We show that
elastic couplings induce a long-range spatial arrangement of the
local stress (cf. first subsection) and modify the local stress
relaxation kinetics (cf. second subsection). The range of these
spatial and dynamical correlations are analyzed during macro-
scopic relaxation. Lastly, we compare in a third subsection the
time distribution deduced from the rheological measurements
of a polymer glass to the intrinsic time distribution. We show
that mechanical couplings significantly decrease the weights of
the longest time of the intrinsic time distribution. Using finite
element simulations allows for an understanding of the physics
of the α relaxation of a polymer. This work is the first step
toward a quantitative modeling of the α relaxation viscoelastic
and elasto-visco-plastic behavior of polymers in their glass
transition regime.

■ INTRODUCTION OF THE MODEL
Classical Picture of Glass Dynamics. This work aims at

modeling dynamical heterogeneities and their consequences on the
viscoelastic spectrum of the α relaxation using finite elements. The
picture is now well-established qualitatively: In its glass transition
regime, a polymer can be considered as constituted of nanometric
domains, the sizes of which weakly vary with temperature.16,23 Each
domain has a specific lifetime and thus may randomly hop in a new
configuration. In the presence of stress, hopping goes together with, on
average, a release of the stress, as described by the Eyring model. In its
new configuration, it gets a new lifetime. The important point is that
lifetimes are distributed over many decades, as proven by various
experiments.2

Let us now consider the α relaxation of a polymer after a step strain.
Prior to macroscopic relaxation, each domain is glassy and relaxes
following his initial lifetime, τi. When the lifetime of a given domain is
elapsed, the domain hops in a new arrangement with a vanishing
stress, and its lifetime is changed. At the end of the relaxation, or over a
long time scale, all domains have hopped, possibly several times, and
the matrix has a rubbery modulus. In order to describe the physics of
this relaxation, as well as dynamical heterogeneities, we introduce the
model described in the following.

Model. Space is divided in domains, each differing by its own
mechanical response with a lifetime τi (as shown in Figure 1).

The response of each domain is glassy at short times. Instead of
describing a hop in the stress−strain relation, we assume that each
domain exhibits an exponential decay of the stress. Note that for a
large number of domains, a random hop with a given lifetime is
equivalent to an exponential decay. Indeed, replacing the hopping by
an exponential decay, we lose the stepwise stress relaxation that may
be observed on very small systems. However, by doing so, each
domain can be replaced by a Maxwell element. Second, we assume that
the lifetime of a domain remains constant with the elapsed time. We
believe it is a relevant approximation because in a step strain relaxation,
most of the stress has relaxed during the first decay of the stress.
Lastly, we place in parallel to the Maxwell element a spring that
accounts for rubber elasticity and which is relevant at long time scale.
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We assume for the sake of simplicity that the material is
incompressible; in practice, the bulk modulus is of the order of 1
GPa, and we have checked that the overall response is not significantly
sensitive to the bulk modulus in the plain strain condition. This model
has two major advantages. First, it is simple to implement in a finite
element software; second, a self-consistent estimate of the viscoelastic
spectrum can also easily be performed.
Hence, the polymer system is considered as a set of unit domains i,

each one having its own mechanical response characterized by a
complex modulus Gi*. (Unit domains are arbitrarily represented by
squares in Figure 1.) As explained above, the modulus Gi* of each
domain i is given by a generalized Maxwell model where moduli Gg
and Gr are the glassy and rubbery shear moduli, respectively, of a
polymeric material with a single characteristic relaxation time, τi, that
can be simply written as

ω
ωτ

ωτ
* =

+
+G G

i
i

G( )
1i

i

i
g r

(1)

In this work, Gg and Gr are constant for all unit domains of a given
system. Gg was taken to be equal to 1 GPa, which is approximately the
modulus value of glassy polymer chains. Gr was varied from Gr = 0 to
10−1Gg. Most simulations were performed taking Gr = 10−3Gg, which
corresponds to a typical value for the modulus of a rubber polymer
matrix. The relaxation times τi are distributed over all unit domains
according to a distribution p(τi). Indeed, at small scales, a polymer
glass exhibits fluctuations of packing, density, and arrangement. These
fluctuations may induce a Gaussian distribution of the energy barriers
involved in the α relaxation. As the relaxation time strongly depends,
typically exponentially, with the barrier height, it is likely that the time
distribution is log−normal. We thus choose a log−normal distribution
for p(τi):
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where log(τmax) is the center of the log−normal time distribution. We
define the dimensionless time t* = t/τmax. In eq 2, σ is the standard
deviation of the log−normal distribution of times, which has been

taken equal to either 2 or 4.24,25 For real homopolymers, we would
expect σ values around 2, while for blends of two asymmetric miscible
polymers having very different Tg, σ would be larger and could reach a
value around 4. In this model, there are two dimensionless parameters:
the ratio Gr/Gg and the width of the time distribution σ.

We will now compute both macroscopic viscoelastic response and
microscopic behavior using finite elements and a self-consistent
resolution in plain strain for an incompressible medium under a small
deformation. In this case, simple shear and pure shear are equivalent in
the determination of the macroscopic shear modulus. In the following,
we study the case of a simple shear, and eigendirections of the applied
macroscopic strain tensor are oriented at 45° from horizontal.

Self-Consistent Method. From the microscopic constitutive
equations distribution (Gi*(ω)), it is possible to first apply the self-
consistent method of homogenization for viscoelastic materials. The
homogenized elastic shear modulus of 2D inclusions (aligned fibers
originally) in the plane strain condition is presented in ref 26. Masson
and Zaoui extended the three-dimensional (3D) elastic calculation to
viscoelastic inclusions and matrix using a Laplace transform.27 This
work has been used for viscoelastic emulsions taking into account the
surface tension28 and more recently for polymer systems.24 The same
extension is done for 2D inclusions here. We first consider the
complex modulus of a homogeneous matrix of modulus Gm* containing
a small volume fraction of various viscoelastic spherical inclusions of
complex modulus Gi*. The macroscopic modulus of the sample G* in
the incompressible self-consistent case is given by eq 3.
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In eq 3, Φ is the total volume fraction of inclusions and p(τi) is the
characteristic time distribution of the inclusions such that ∫ τip(τi) dτi =
1.

We will now make an analogy between our system composed only
of a tiling of domains and a matrix containing various inclusions. Let us
consider a homogeneous matrix with the viscoelastic modulus Gm*. Let
us now consider this same homogeneous matrix, but containing
inclusions, with a total volume fraction Φ that exhibits the same
distribution of mechanical properties as the heterogeneous system. We
are seeking a homogeneous matrix having the same mechanical
properties as the heterogeneous system G*. In this case, whether the
matrix contains representative inclusions or not has not to change Gm*.

This leads thus to G* = Gm*. Whatever the value of Φ, this additional
condition changes eq 3 into

∫ τ τ
* − *
* + * =

τ
p

G G

G G
( ) d 0i

i

i
i

,2D 2D

,2D 2Di (4)

This relation ensures that, in the frame of the self-consistent approach
G* = G2D* = Gm,2D* . Equation 4 can then be numerically solved24 to
obtain G*.

This mean field approximation allows us to estimate the average
macroscopic response of a heterogeneous system. This self-consistent
model assumes that a given domain is embedded in a matrix that is
considered to be homogeneous (mean field). But in reality a domain is
embedded, not in a homogeneous matrix, but in a limited number of
domains with heterogeneous mechanical properties. These correla-
tions may eventually affect its local stress relaxation. In this case we
should observe a difference between the self-consistent result and the
exact mechanical response. As a result, one can wonder what should be
the mechanical response of a heterogeneous system at the scale of a
domain.29 To answer this question, we have developed a finite element
method, presented in the next section.

Finite Element Method. In this section, we detail the way the
stochastic finite element method is implemented and its robustness
ensured. Readers not interested in this point may skip directly to
Results.

Implementation of the Finite Element Method. The finite element
method is a procedure for obtaining numerical approximations to the

Figure 1. Dynamical heterogeneities in a polymeric glass. Introduction
of a finite element method. Each colored square of four elements
represents a domain which has the same mechanical behavior. Gg and
Gr are constant over the whole sample.

Macromolecules Article

DOI: 10.1021/acs.macromol.5b01138
Macromolecules 2015, 48, 6690−6702

6692

http://dx.doi.org/10.1021/acs.macromol.5b01138


solution of boundary value problems posed over a domain. This
domain is replaced by the union of disjoint subdomains called finite
elements or elements in a shortened form. Here we attribute to each
element an intrinsic relaxation time τi. The response of each element is
expressed in terms of a finite number of degrees of freedom
characterized as the value of an unknown function at a set of nodal
points. The stresses in each element are related to the strains by use of
the time integral equation of 1:

∫ ∫σ = ∂ϵ
∂

+ ∂ϵ
∂

τ−t C
s

s
s C

s
s

s( )
( )

d e
( )

d
t t

t

0
r

0
g

/ i

(5)

The subscripts r and g will denote rubber and glassy components,
respectively. Cr and Cg are fourth-order material tensors. Assuming
isotropy, these take the reduced form Ci = 2 μi I⊗ I + λi|, where μ and
λ are the scalar, Lame ́ coefficients and I is the second-order identity
tensor; | is the symmetric order of the fourth-rank identity tensor.
Because the problem is nonlinear in time step, an iterative

procedure should be followed in order to ensure equilibrium in each
time increment. Here the Newton−Raphson method was used for that
purpose.
In summary, we divide the structure into elements with nodes

attributing a time τi to each element. We use periodic boundary
conditions, and we solve it in time, using logarithmic time step, in
order to cover about 12 decades of time using the ZeBuLon FE
software.30,31 As specified in the precedent section, we work in the 2D
plane strain condition. The medium is incompressible at all
frequencies; in practice, we fix the bulk modulus K = 105Gg.
G′ and G″ Calculations. For all finite element simulations, we

impose a macroscopic shear step strain ϵ12 = ϵ0 = 0.01 (which is
consistent with small deformation condition used in the model), and
the time relaxation of the macroscopic stress σ12(t) is computed.
Calculations were performed over a large enough time range such that
the whole stress relaxation can be observed. We calculated 8 and 3
stress values per time decade for the simulations with σ = 2 and σ = 4,
respectively.
We deduce the frequency-dependent macroscopic complex

modulus G*(ω) from the macroscopic stress relaxation curve σ12(t)
. In order to do so, we assume that the macroscopic stress σ12(t) fits to
a sum of the Maxwellian response of each unit domain (cf. eq 6) with
the normalized F(τ) distribution function.

∫ ∫σ τ τ τ= + =τ
∞

−
∞

t F G G F( ) ( )( e ) d with ( ) 1t
12

0
g

/
r

0 (6)

This is indeed equivalent to a Fourier transform. In practice, we use
a discrete function F(τ) setting 50 values of τ for σ = 2 and 100 for σ =
4. From the F(τ) function determined by the previous σ12(t) fit, we
deduce the macroscopic complex modulus G*(ω) according eq 7.
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Figure 2a presents the typical curves obtained for the time
dependence of the shear modulus G(t) for σ = 2 and taking Gr = 0
(corresponding to unentangled polymer chains) or Gr = 10−3Gg
(typical of entangled or cross-linked polymer chains). The
corresponding frequency dependence of the complex modulus
G*(ω) is presented in Figure 2b.

Representative Volume Element Definition and Characterization.
Unlike standard finite elements, and because we use here a random set
of τi values, the estimation of the minimal size of the finite element
simulations has to be discussed precisely. Computations have to be
performed on a large enough volume such that results are
representative of the mechanical response of a macroscopic sample.
Therefore, we need to define the minimum number of domains N
required for a tiling to be representative of a bulk sample. First, the
random draw of the τi values induces a variance on the shear modulus
that decreases with the number of domains. N has to be large enough
for the variance to be reasonably small. Second, the mechanical average
depends on the size of the sample. The number of domains has to be
large enough so that edge effects are negligible. Thus, as N increases,
the mean value of GN′ (ωτmax), ⟨GN′ (ωτmax)⟩, calculated from different τi
distributions, tends toward the macroscopic modulus G∞′ (ωτmax)
corresponding to a sample of an infinite size, while its variance
⟨(⟨GN′ (ωτmax)⟩

2 − GN′ (ωτmax))
2⟩, tends toward zero.

To estimate the ideal size of the system, the modulus was calculated
varying N. For each sample of size N, ten τi draws in agreement with
eq 2 were used. From these, we deduce the modulus average
⟨GN′ (ωτmax)⟩ and the standard deviation σN. Figure 3 shows the typical
variation of ⟨GN′ ⟩ for increasing N obtained at a given frequency

Figure 2. Logarithmic variation of modulus G with log(t/τmax) (a) or with log(ωτmax) (b). Data were calculated for σ = 2 and Gr = 0 (black), Gr =
10−5Gg (blue), or Gr = 10−3Gg (red).

Figure 3. Variation of the logarithm of elastic modulus G′ at
log(ωτmax) = −1.6 versus the domain number N. Simulations were
performed taking σ = 2 and r = 2.
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log(ωτmax) = −1.4 for a time distribution width σ = 2. For N > 20,
the standard deviation becomes negligible. Moreover, ⟨GN′ ⟩ ≈ GN′ ≈
G∞′ for N > 40. We checked that a size of N = 40 × 40 domains is
also ideal for a larger time distribution width σ = 4. In this work, we
thus took N = 40 × 40 domains for all finite element simulations.
Effect of the Number of Elements by Domain. If the number of

elements, Nel, describing a single domain is too small, there are not
enough degrees of freedom and the system appears stiffer than it
should be. We tested different ratios between the number of elements

and the number of domains. We define the quantity =r N
N

el . In

Figure 4, it appears that r = 2 (4 elements by domain) is sufficient for
σ = 2. The same analysis leads to fix r = 4 (16 elements by domain) for
σ = 4.

■ RESULTS
Figure 5 presents the G*(ω) curves obtained by the finite
element method for σ = 2. Gr values were vary from 10−1 Gg to
10−7 Gg, from top to bottom. On Figure 6 are displayed the
results obtained for σ = 4. We observe that on the high-
frequency side of the glass transition, the complex moduli
G*(ω) are similar whatever the value of Gr. The broadness of
the loss modulus maximum significantly depends on the width
of time distribution σ, as clearly seen when comparing Figures 5
and 6. In addition, for vanishing values of Gr, the behavior is
Maxwellian: G′ scales as ω2 and G″ scales as ω. For larger
values of Gr, that low-frequency scaling is not verified provided

G′(ω) < 10Gr. A pseudorubber plateau can appear in the low-
frequency side of the glass transition (for exemple, this
pseudoplateau regime lies between log(ω) = −4.5 and −3 for

σ = 2 and
G

G
g

r
= 105) and is followed at very low frequencies by a

true plateau equal to Gr. The pseudoplateau regime is

particularly visible for low values of σ and high values of
G

G
g

r
.

Comparison with Self-Consistent Approximation. First
we will compare the responses predicted by finite element
method to the ones given by the self-consistent approximation.
In Figure 7, data obtained for σ = 2 and Gr = 10−3 Gg are
displayed. Series (or Voigt) and parallel (or Reuss)
approximations, which correspond to strain and stress averages,
respectively, are also plotted in Figure 7. We observe that series
and parallel models are very poor approximations of the exact
calculation made by the finite element method. This can be
explained by the very large time distribution on one hand, and
by the high moduli contrast between Gg and Gr on the other
hand.
The self-consistent approximation leads to much more

accurate G′ and G″ curves. However, deviations from finite
element predictions appear in the glass transition domain, the
amplitude of which depends on the two physical parameters of
the model: the modulus contrast between the rubber and the

glassy state
G

G
g

r
and the intrinsic relaxation time distribution

width σ. First, Figure 8 compares the predictions given by the
finite element and the self-consistent approaches for varying
time distribution width σ. Calculations were performed
assuming Gr = 10−3Gg. Both methods yield the same
macroscopic modulus values G*(ω) when approaching both
the rubber and glassy limits. However, their predictions differ in
the glass transition domain. On Figure 8, deviations between
self-consistent and finite elements predictions spread over four
frequency decades for σ = 2 and eight frequency decades for σ
= 4. The larger the time distribution, the larger the amplitude of
the discrepancy. In addition, the broadness of the glass
transition domain clearly increases with σ. As a consequence,
the slope of the frequency dependence of the modulus
decreases as σ increases. Figure 9 compares the maximum

value of the elastic modulus slope, denoted ω
∂ ′
∂( )max Glog( )

log( )
,

observed for varying σ. As expected, for a constant value of
G

G
g

r
,

Figure 4. Variation of logarithm of elastic modulus G′ at log(ωτmax) =

−1.6 versus =r N
N

el . Simulations were performed taking σ = 2 and N

= 128 × 128 for r = 1, r = 2, and r = 4. For r = 8, N = 64 × 64.

Figure 5. Frequency dependence of elastic part G′(ω) (a) and loss part G″(ω) (b) of the macroscopic modulus of a heterogeneous system.

Simulations were performed taking σ = 2.
G

G
g

r
was varied from 10 to 107 with step of one decade (top curve to bottom curve).
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ω
∂ ′
∂( )max Glog( )

log( )
decreases for increasing time distribution width

σ. Moreover, the self-consistent approximation predicts a larger
maximal slope for the elastic part of the modulus. Hence, the
self-consistent model underestimates the width of the macro-
scopic relaxation, as explained further below. We have added
experimental data deduced from mechanical measurements
performed on homopolymers or asymmetric miscible polymer
blends having a very broad glass transition domain. According

to these results, the width of the time distribution function
should be around 2 for homopolymers and could reach a value
of 4 for asymmetric miscible blends (assuming 2D simulations
capture the width of the glass transition of 3D experimental
systems, which seems reasonable).

Influence of the Modulus Contrast Gg/Gr. The
discrepancies with finite elements predictions observed in the

glass transition frequency range are enhanced as the ratio
G

G
g

r

Figure 6. Frequency dependence of elastic part G′(ω) and loss part G″(ω) of the macroscopic modulus of a heterogeneous system. G

G
g

r
was varied

from 10 to 107 with step of one decade (top curve to bottom curve).

Figure 7. Series model, parallel model, self-consistent model, and finite element calculation comparison for σ = 2 and =( )log 3
G

G
g

r
.

Figure 8. Frequency dependence of elastic modulus G′(ω) and loss modulus G″(ω) predicted by 2D self-consistent model (dotted line) and 2D
finite element model (line) for 2D finite element simulation Gr = 10−3Gg and varying time distribution width σ. Yellow data correspond to σ = 2,
green data to σ = 4.
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increases. Figure 10 compares the frequency dependence of the
2D macroscopic complex modulus predicted by the self-
consistent and the finite element approaches. Results were
obtained taking a constant time distribution width σ = 2 and
varying Gr values taken equal to 10−5Gg, 10

−3Gg and 10−1Gg.
We observe that the larger the contrast between Gg and Gr
moduli, the larger the difference between the finite element
method and the self-consistent approximation. This discrep-
ancy appears for ωτmax = 1 and extends toward low frequencies

as
G

G
g

r
increases. For ( )log

G

G
g

r
= 5, deviations are significant until

ωτmax = 10−6.
In Figure 9, we observe that the maximum value of the elastic

modulus slope increases with the modulus contrast ( )log
G

G
g

r
. At

high values of ( )log
G

G
g

r
, ω

∂ ′
∂( )max Glog( )

log( )
tends toward 2, which is

the limit value corresponding to the slope of a purely

Maxwellian response. At intermediate ( )log
G

G
g

r
values, the

maximum slope predicted by the finite element method is
smaller than the one given by the self-consistent approximation.

In summary, all these results prove that the self-consistent
method is reasonably accurate for predicting the viscoelastic
modulus of heterogeneous systems, when compared to series
and parallel methods. However, in the glass transition regime, it
predicts a viscoelastic modulus significantly different from the
one predicted by FE simulations for a highly heterogeneous
polymer system (i.e., having a large time distribution σ and a

high modulus contrast
G

G
g

r
). We will analyze in detail the origins

of this discrepancy in what follows.
We will now analyze the local mechanical response of such

heterogeneous systems.
Spatial Organization of the Stress Relaxation Kinetics.

The main advantage of the finite element method is to provide
maps of local stress or strain over the whole sample at each step
of the relaxation process. It can thus evidence possible
collective mechanisms of the relaxation process in the linear
regime. Local stresses evolve mainly in a nonmonotonic way
and can be negative. Figures 11 and 12 present both the local

Figure 9. Maximum of
ω

∂ ′
∂

Glog( )
log( )

variation as a function of ( )log
G

G
g

r
for

finite element method (FE) and the self-consistent approximation
(SC). Data deduced from mechanical measurements performed on
various polymer are plotted: cross-linked poly ethyl acrylate,32 cross-
linked styrene−butadiene copolymer, cross-linked polybutadiene,24

and blends of SBR and PB chains (50% and 75% in weight of SBR).24

Figure 10. G′ and G″ calculated by finite element and self-consistent methods for σ = 2 and ( )log
G

G
g

r
= 1 (yellow), ( )log

G

G
g

r
= 3 (red), and ( )log

G

G
g

r

= 5 (brown).

Figure 11. σ12
i /ϵ0Gg for different times of the macroscopic relaxation.

Calculations were performed taking Gr = 10−3Gg, σ = 2, and (a) t* = 3
× 10−4, (b) t* = 10−2, (c) t* = 10−1, (d) t* = 1, (e) t* = 10, (f) t* =
40, (g) t* = 400, (h) t* = 104, or (i) t* = 106. Color scale: pale yellow,
σ12
i = ϵ0Gg; black, σ12

i = −ϵ0Gg; red, σ12
i = 0.
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stress maps for σ = 2 and Gr = 10−3Gg, but using two different
scales. (The individual stress relaxations for various domains are
displayed in Figure 13.) In Figure 11, the color scale represents

the local stress σ12
i (t) /Ggε0. As a consequence, when all the

blocks have a stress smaller than a tenth of their initial values,
σ12
i (t) /Ggε0 < 0.1, the color is uniform (red). In contrast, in
Figure 12, the local stresses are divided by the σ12

i space average
⟨σ12(t)⟩. Thus, the color scale is different for each time t and is
normalized so that the color scale is calculated as a function
σ12
i (t)/⟨σ12(t)⟩. The yellow color corresponds to a stress which
is ten times larger than the average one at a given time t. Maps
obtained for the same macroscopic relaxation times are
presented in Figures 11 and 12 and have the same label for
panels a−i.
As seen on these figures, different behaviors are observed

during the relaxation. We will thus divide the relaxation into
four successive stages as described below. As a global reminder,
we impose that the macroscopic strain and the microscopic
moduli of each domain vary with time following their own
intrinsic relaxation time.

Stage 1: Uncoupled relaxations of domains. At the beginning of
the stress relaxation (i.e., typically t* ∼ 3 × 10−4 and G(t) ≈
0.9Gg in Figure 2), corresponding to panel a in Figures 11 and
12), each domain evolves independently. The fastest domains
(τi < t) first have a modulus smaller than the surrounding glassy
matrix composed by the other domains. They are soft and cost
nothing energetically to deform, but they are embedded in a
glassy matrix; they cannot deform too much because it would
deform the matrix. They typically behave as soft Eshelby
inclusions in a hard matrix with a local strain ϵ12 = 2 ϵ0 (cf.
Figure 14a). In Figure 11a,b they appear in red in a glassy

matrix appearing in yellow. This means that their local stresses
are very low. Then, the number of domains with a rubber
modulus (termed “rubber domains” henceforth) increases,
leading to a slow decay of the macroscopic stress. This
phenomenon leads to an increasing standard deviation of strain
in the system (cf. Figure 15b).
Stage 2: The stress is supported only by a network composed of

high modulus domains (“glassy network”). As t increases, the
number of domains supporting a glassy stress increases and
coupling between neighboring domains begins to take place.
Lines of high stress (σ12), oriented at 45°and −45°, appear (cf.
map c in Figures 11 and 12) and go through the whole sample
forming a “glassy network”. These few domains support a high
local stress of the order of ϵ0Gg, in yellow in Figure 11c−e.
Figure 12 shows that they sustain a local stress which becomes
much larger than the average stress. The density of these
“glassy” domains decreases for increasing time t (cf. maps d−f
in Figure 11) and is close to its percolation threshold at t
around τmax as displayed in Figure 11d. We have checked that,
more generally, the stress lines of the glassy network are always
parallel to the eigenvectors of the macroscopic strain tensor and
that the strain lines are oriented at 45° of these eigenvectors.
Before depercolation of glassy domains, rubber inclusions

still cannot deform too much because they remain embedded in
the glassy network, the deformation of which has a high
energetic cost. (cf. Figures 11 and 14, maps d and e). When a
few domains of this glassy network relax their modulus, rubber
zones can deform more and more (cf. Figure 14c−e). High
deformation lines appear oriented at 0°and 90°. The location of
these lines corresponds to the relaxing domains. This

Figure 12. Maps of σ
σ

t
t

( )
( )

12

12
calculated taking Gr = 10−3Gg and σ = 2.

From left to right, the dimensionless time t/τmax and average
macroscopic stress ⟨σ12(t)/τmax)⟩ are equal to, respectively, (a) (3 ×
10−4, 0.9ϵ 0Gg ); (b) (10−2, 0.7ϵ0Gg ); (c) (0.1, 0.45ϵ0Gg ); (d) (1,
0.2ϵ0Gg ); (e) (101, 0.05ϵ0Gg ); (f) (40, 0.01ϵ0Gg ); (g) (4 × 10 2,
0.0002ϵ0Gg ); (h) (1 × 10 4, 5.10−5ϵ0Gg ); (i) (10

6, 2.10−5ϵ0Gg).

Figure 13. Local σ
ϵ

t
G
( )i

12

0 g
in each element as a function of τ( )log t

max
.

Simulations were performed taking Gr = 10−3Gg and σ = 2.

Figure 14. Maps of ϵ calculated taking Gr = 10−3Gg, σ = 2, and ϵ0 =
0.01: (a) t* = 3 × 10−4, (b) t* = 10−2, (c) t* = 10−1, (d) t* = 1, (e) t*
= 10, (f) t* = 40, (g) t* = 400, (h) t* = 104, and (f) t* = 106.
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phenomenon leads to a large and steep decrease of the
macroscopic stress. In this regime, global stress relaxation is
controlled by only the few “weak points” of the network
relaxing their stress in a Maxwellian way because the energetic
cost of deforming rubber domains is negligible compared to
that necessary to deform these weak points. Only these few
domains of this former “glassy” network have now a low
modulus so that the network cannot sustain a high stress
anymore. These few domains control the macroscopic
relaxation of stress. This leads to a purely Maxwellian
macroscopic relaxation in this range of times: G′ and G″
exhibit a characteristic ω2 and ω dependence, respectively, if Gr
is sufficiently low (cf. Figures 5 and 6). When these domains
are completely relaxed, the strain standard deviation is a
maximum (cf. Figure 15b) because of high strain lines
coexisting with glassy domains (cf. Figure 14g). When the
macroscopic stress reaches the order of magnitude of 10Grϵ0,
the energetic cost of deforming a rubber domain is no more
negligible compared to the global elastic energy, especially
because they are now highly deformed; this is the beginning of
stage 3.

Stage 3: The stress is equally supported by the remaining “hard”
network and the rubber matrix. During this stage, rubber zones
connecting glassy aggregates are still highly deformed so that
the former glassy network is still visible in Figure 12g−i. This
stage is characterized by an increasing number of rubber
domains leading to smaller and smaller glassy aggregates and by
a strain homogenization in the rubber zones to minimize the
elastic energy. These two phenomena lead to a strain transfer
(cf. Figure 14g,h) from rubber zones to the former glassy
network so that the strain standard deviation decreases in
Figure 15b. As a consequence of the strain transfer, the
macroscopic stress can follow a pseudoplateau regime if the

modulus contrast
G

G
g

r
is high (cf. blue curve in Figure 2, for

example). This pseudoplateau is also visible in the self-
consistent calculation for the same reasons (cf. Figure 10a).
Stage 4: Uncoupled relaxation of the last hard domains. Once

the concentration of glassy aggregates becomes small, the
relaxations of the last hard domains become uncoupled. They
behave like hard Eshelby inclusions in a soft matrix (cf. map i in
Figure 12). The macroscopic modulus relaxes slowly toward its
rubber value.

■ DISCUSSION

Mechanical Coupling Induced by Dynamical Hetero-
geneities. Figures 11 and 12 show that local stress is widely
distributed during the macroscopic relaxation of a heteroge-
neous system. To characterize the amplitude of this stress
disorder, we estimated the variance of the stress within the
sample. In Figure 15, we have plotted the normalized variance

of the stress as a function of time for
G

G
g

r
ratios varying from 10−7

to 10−1 (bottom to top). Disorder evolves during the whole
process with a maximum during stage 2, i.e., in the time
window where the glassy network is around its pseudoperco-
lation threshold. Once the latter is crossed, the stress disorder is

controlled by the mechanical contrast
G

G
g

r
and gradually

decreases during stages 3 and 4.
The slow decay of the stress disorder during stage 3 and 4 is

due to the heterogeneity of the matrix.
To get insight into the local stress relaxation disorder, we

compare it to the stress variance predicted for the same
domains but embedded in a homogeneous viscoelastic Maxwell
matrix. In this classical Eshelby model, a straightforward
calculation shows that the local stress undergone by a single
domain or inclusion in the 2D geometry is given by the relation

σ τ
ττ

τ τ
= ϵ = ̅

+ ̅
τ−G e with

2
i

t
i
E i

i
g 0

/
,eff

i
E
,eff

(8)

where τi is the local intrinsic relaxation time of the inclusion
and τ ̅ is the time relaxation of the matrix. We assume here that
the matrix and the inclusion have the same glassy modulus Gg.
From relation 8 we compute the variance of the stress given by
the same distribution of domains, i.e., with a relaxation time
distribution given by p(τi) . The stress variance predicted for a
distribution of Eshelby inclusion is plotted in Figure 15 for
comparison. At time t > 10τmax, the stress variance calculated
from finite element simulations is many orders of magnitude
larger than the one predicted for independent inclusions in a
viscoelastic matrix. The coupling between domains is
responsible for a huge disorder at the end of the relaxation.

Figure 15. Evolution of stress and strain standard deviations with time.
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It is worth noting that at short times, in stage 1, there is a
good agreement between the independent inclusions model
and the finite elements results, confirming there is no coupled
domains relaxation.
According to the stress maps plotted in Figure 11, the stress

levels are not randomly arranged within the sample. Indeed,
high-stress lines are oriented at 45° from the strain
eigendirections. These lines and their orientations are also
observed for other strain geometries (incompressible sample
undergoing a simple elongation or shear experiment performed
on a compressible material). We deduce that the high-stress
lines are oriented along the microscopic stress eigenvectors. We
compute the 2D normalized correlation function I(r,t) of the
stress in polar coordinates for each macroscopic relaxation time
t.

σ σ σ
σ σ

=
+ −

−
I r t

r x t x t t

t t
( , )

( , ) ( , ) ( )

( ) ( )
x

2

2 2
(9)

An example of the 2D normalized correlation of the stress in
polar coordinates is presented in Figure 16. We observed that
I(r,t) varies with θ as cos(4θ) g(r,t) .

The function g(r,t) is plotted in Figure 17 for various t values.
g(r,t) scales as 1/r2 in stages 1, 3, and 4 of the macroscopic
relaxation in agreement with the g(r,t) scaling predicted for a
single inclusion and as observed by Lemaıt̂re in simulation of
supercooled viscous liquids.33 However, at the middle of the
macroscopic relaxation,i.e., in stage 2, g(r,t) varies like rβ, where
β is larger than −2 and reaches a maximum of the order of
−1.3. This indicates, following the Lemaıt̂re discussion,33 that
the correlation length of the stress exceeds the size of the
sample during stage 2, confirming the existence of a long-range
correlation of the structure reminiscent of a percolation
transition. This spatial correlation results from the elastic
coupling between domains that induces correlation of the
kinetics of stress relaxations.
Local Effective Relaxation Times. Elastic couplings create

a spatial arrangement of the local stress that cannot be
described in a mean field description. In that case, each domain
is surrounded by a homogeneous matrix. We deduce that elastic
interactions do modify the kinetics of the stress relaxation of

each domain. In the following, the latter will be compared to
the one of a Maxwell element having a relaxation time τi. In this
aim, we will attempt to define an effective relaxation time for
each domain.
If the stress σ12

i (t) decays exponentially, its relaxation time
can be calculated by the integral of σ 12

i (t):

∫τ
σ

=
− ϵ

σ
t G

G
t

( )
d

i
12 r 0

g (10)

However, if Gr ≠ 0, it is easy to show that eq 10 leads to τσ = τi
whatever the dynamical disorder of the surrounding domain.
Thus, the effective time defined by eq 10 is not relevant to

discuss the complex kinetics of stress relaxation. The relation τσ
= τi originates from the fact that the integral can be dominated
by the slowest contributions of the local relaxation, which can
be a very slow process. Indeed, most of the stress release of
domains occurs during stage 2. However, in stages 3 and 4, the
part of the relaxation is very long because of the strain
balancing occurring between hard and rubber domains. Despite
its small amplitude as compared to stage 2, this last part of the
local relaxation dominates in eq 10.
To study the relaxation occurring in stage 2, we focus on the

time for which each domain has relaxed its glassy stress by 1
order of magnitude. We thus collected the first time ti* at which
σ12
i (ti*)/Ggϵ0 becomes smaller than a given stress threshold Σ.
We deduced the corresponding effective time τi,eff. The latter is

Figure 16. Example of the 2D normalized correlation function I(r,t) of
the stress calculated from stress map d in Figure 11 taking Gr = 10−3Gg
and σ = 2.

Figure 17. Spatial correlation of stress for different times of the
relaxation.
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defined as the characteristic relaxation time that a Maxwell
element should have in order to reach at the time ti* the stress
level σ12

i (ti*). Comparing the stress decay to an exponential one

σ12
i (t*) = Σϵ0Gg = ϵ0Gge

−t*/τi,eff, we define an effective relaxation
time by τi,eff = ti*/ln(ϵ0Gg/Σ). Because we focus on the
beginning of the macroscopic relaxation, the stress threshold Σ
is chosen as the macroscopic stress level reached near the
pseudopercolation threshold of glassy domains within the
sample, i.e., Σ ≈ ϵ0Gg/10 (in Figure 2, G(t) = Gg/10 at t ≈
τmax).
Figure 18 presents the τeff

i /τmax values measured applying this
procedure. Data obtained for different time distribution widths
σ and Gr values are displayed as a function of τi/τmax.

• At low τi, the effective relaxation time is of the order of 2τi.
The relaxation of the shortest τi domains is thus slightly slower
than that of isolated domains.
• At large τi, τi,eff is significantly shorter than τi and fluctuates

around a limit value of the order of τmax with a standard
deviation which is proportional to σ, the width of p(τ) .
The crossover between the two regimes is broad and occurs

at τi values ranging between τmax and 10τmax. Similar results are
observed for a larger time distribution width; data obtained for
σ = 4 are displayed in Figure 18. Figure 18 shows that eq 8
describes well the average value of τeff

i as a function of τi.
We have computed the correlation function of the τi,eff times.

Data are displayed as dashed lines in Figure 17. As previously
mentioned, the intrinsic times τi are randomly drawn and are
thus uncorrelated. As shown in Figure 17, the correlation
function of τi,eff scales with 1/r1.5, revealing that the slow
relaxations are organized along high-stress lines. The domains
located in high-stress lines have a stiff neighboring and can
sustain a high local stress for a longer time. On the other hand,
the slow domains that are outside the glassy stress lines are
embedded in a soft matrix. Their relaxation kinetics is similar to
that of the matrix.

In summary, at half course of relaxation (stage 2), a long-
range correlation appears both in the stress field and in the
kinetics of local relaxations, revealing that domains have
coupled the release of stress. Simultaneously, at a macroscopic
scale, the viscoelastic modulus shows a quasi-Maxwellian
behavior. We will now compare the kinetics of local relaxations
to that of macroscopic modulus decrease.

Comparing Relaxation Time Distributions. Lastly, we
compare the stress relaxation of domains with the macroscopic
one. We compute the distribution function of the effective
relaxation times Peff(τi,eff) corresponding to the data of Figure
18. This time distribution accounts only for the relaxation from
the glassy modulus to one tenth of its initial value. We see that
Peff(τi,eff) drops toward zero for times t larger than tc = 102τmax,
i.e., at the end of stage 2 contrary to the intrinsic time
distribution P(τi) (cf. Figure 19). We compared Peff(τi,eff) to the
time distribution F(τ) associated with the macroscopic
viscoelastic relaxation deduced from eq 6.

We observe that F(τ) strongly decreases at the pseudoper-
colation threshold (τ ∼ 10τmax) as Peff(τi,eff) does in this time
range. The main differences between F(τ) and Peff(τi,eff) are
observed for t > 100τmax. Within this time window, F(τ) is
smaller than P(τi) and remains nonzero. Obviously, given the
chosen stress threshold, Peff(τi,eff) cannot capture this regime.
F(τ) contains a tail of long relaxation times that originates from
the persistence of the percolation network at long times as
discussed above.

Summary. We have identified four main steps whose main
features are summed up in Figure 20 both at a local and at a
macroscopic level. First, at the beginning of the relaxation, stage
1, isolated fast domains relax in a glassy matrix with a
characteristic time close to their intrinsic relaxation time. The
Palierne self-consistent model describes precisely the relaxation,
as can be seen in Figure 8. Then in stage 2, the macroscopic
relaxation becomes slower than the one predicted by the self-
consistent approach, owing to the heterogeneity of the matrix.
At a mesoscopic scale, the domains aligned on the principal
stress directions show a correlated decay (cf. Figure 17).
Because the stress is supported by lines composed of slow
domains, the disorder of local stresses and effective relaxation
times is then larger than the one expected assuming a mean
field approximation (cf. Figure 15). Hereafter, these glassy
stress lines break up and the relaxation becomes very steep and
follows a characteristic Maxwellian relaxation for the
viscoelastic modulus. In stage 3, few slow domains support a
local stress, of the order of 10ε0Gr, that is higher than the

Figure 18. Variation of the effective relaxation times τi,eff/τmax as a
function of τi/τmax (log−log plot). The effective relaxation times were
determined applying the cut off method: τi,eff= t*/ln(10) with σ12

i (t*)
= ϵ0Gg/10 (cf. insert where the stress relaxation of a domain in the
relaxing heterogeneous system (in green) is compared to the one of
the same domain would undergo if it were alone). Results obtained for
different values of Gr and σ are displayed: blue squares, σ = 4 and Gr =
0; green triangles, σ = 2 and Gr = 10−3Gg; red circles, σ = 2 and Gr = 0.
The effective relaxation time of an inclusion having an intrinsic
characteristic time τi in an infinite homogeneous matrix whose τmax is
the characteristic relaxation time is reported in black.

Figure 19. Effective time distribution Peff(τi,eff) in red, rheological time
distribution F(τ) in blue, and intrinsic time distribution P(τi) in green.
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average macroscopic stress. On the other hand, the fastest
domains are in the rubber state. The slowest domains form a
“hard” network that supports partly the sample stress. Their
relaxation is slowed by strain transfer from the highly deformed
matrix toward the hardest domains and induces a pseudopla-
teau regime for the macroscopic modulus. At the end of this
strain transfer, some of the slowest domains reach the rubber
state, which leads to the destruction of the hard network. In
stage 4, the slowest domains form aggregates embedded in a
rubber matrix. Their relaxation leads to a slow decay of the
macroscopic modulus that is also very well-captured by the
Palierne self-consistent model (Figure 8).

■ CONCLUSION
Polymers in the glassy regime are known to exhibit large
dynamical heterogeneities. Using finite element simulations, we
have predicted the viscoelastic response of 2D glasses whose
widths of intrinsic time distribution vary between 4 and 8
decades, as for real 3D glassy polymers. We have considered
only log−normal time distributions. We show that dynamical
heterogeneities induce a strong inhomogeneous stress field that
evolves with time in a complex way. By means of FE
simulations, we have identified the cascades of local processes
occurring during the macroscopic relaxation.
Long-range mechanical couplings acting between neighbor-

ing domains control both the local stresses and their relaxation
kinetics. For instance, we observed that the domains with the
longest intrinsic times prematurely release most of their stress
when their neighbors have relaxed. The exponent of the spatial
correlation of the stress decay is at a maximum for a
macroscopic relaxation time close to the mean time of the
intrinsic time distribution. Therefore, the stress correlation
length is larger than the sample size. At stage 2 of the
macroscopic relaxation, glassy paths remain in the sample
oriented along the direction of the principal axis of the stress.
This time corresponds to the vicinity of a percolation threshold.
The network of high modulus domains supports most of the
macroscopic stress. As a consequence, the local relaxation of the
fastest domains participating in the “glassy” network induces a
strong decrease of the sample stress and controls it.
As a result, the time decay of macroscopic stress is nearly

Maxwellian. It remains so until the stress sustained by the
network becomes ten times larger than that undergone by the

matrix. At that point, a pseudoplateau regime can occur if σ ≤
2.5 and log

G

G
g

r
≥ 4. A slow decay of the stress follows until

every domain enters a rubber state; the rubber plateau is then
reached.
Remarkably, the self-consistent model captures most of the

trends of this behavior but underestimates the role of
correlations, and as a consequence, the model highly reduces
the long-time portion of the viscoelastic spectrum. However,
the modulus predicted by a mean field approach can thus be up
to 1000 times smaller than the value given by a FE simulation
in the glass transition zone.
We believe that these FE results are very important in order

to quantitatively understand the polymer viscoelastic spectrum.
Quantitative modeling in this frequency domains is still an
important challenge, especially in the crossover domain in
which Rouse modes are expected to coexist with the slow
modes of the α relaxation. Otherwise, this work shows that the
rheological and the intrinsic time spectrum are very different
from each other; the longer time part of the rheological
spectrum is considerably reduced compared to the intrinsic
one. We believe that this phenomenon should also be relevant
to both calorimetry and dielectric relaxation experiments, but
likely quantitatively different because the averaging of intrinsic
relaxation times is different. Lastly, our results show that the
maximum slope of the frequency dependence of the elastic
modulus provides an accurate measurement of the width of the
dynamical heterogeneities distribution. According to a rough
first comparison between 2D FE simulations and experimental
results, the standard deviation of the intrinsic time distributions
should be close to 2 for homopolymers while it would be larger
(up to a value close to 4) for asymmetric miscible polymer
blends. In a further step, it should be possible to compare the
intrinsic time distribution deduced from rheological measure-
ments to that measured by other methods, such as differential
scanning calorimetry or dielectric experiments. Finally, using
FE simulations, it should be possible to predict the mechanical
response of polymer systems whose dynamical heterogeneities
are known from other experiments. This would be helpful, for
instance, in predicting the relation between the structure of
asymmetric miscible blends or interpenetrated networks and
their mechanical properties close to the glass transition.
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