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Lignes directrices

The ultimate downscaling... Theoretical strength(s)
Theoretical tensile strength
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Rigid surfaces — the Orowan estimate

Assume loading on surfaces

o(z) = E%
22
Ve/(z)/A =

28

a2 A

2E

Rupture occurs when o(zyypt) = Otheo iS

such that Vg ~ w

2Ew
Otheo = T

After Lawn 1975 [1]
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Figure: Interaction
energy as a function of
surface separation
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Theoretical strength
For order of magnitudes:

w o~ 1Jm2

A ~ 0.2nm
E ~ 100 GPa
Otheo =~ 30 GPa

or 100 tons = 10% N on 1x1 cm? !l
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Does it conform to our experience ?
1. gravity against surface forces

2. balance gives surface win if

R? < w/pg

3. Cut-off radius around 1 mm !!!

v ! 200 microns

Figure: A typical MEMS

There is something more to it...roughness
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What if remote loading ?

MD simulations of silica rupture

Figure: Structure

From Pedone 2008 [2]

o/ GPa

Figure: Stress
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Assuming remote loading...
e the stress is homogeneous through the macroscopic body

e predicts simultaneous rupture of the full volume when

2Ew
Otheo = T
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Assuming remote loading...
e the stress is homogeneous through the macroscopic body

e predicts simultaneous rupture of the full volume when
2Ew
Otheo ™ | ——
theo A

1. Rupture does not (usually) happen that way — localized

Problem

2. We need to examine the loading and the stress distribution
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Similar estimates for theoretical shear strength

e voir les cours de Benoit Devincre et Marc Legros
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Can we measure the theoretical tensile strength directly 7

1. Surface forces

C
measurements _
. . . 3
with fine tips s
[
allow for direct £

measurement of A

_3 1 1 1 1 1
H 2 4 6 8 10 12
local inter-surface Sample dispiacement [A]
interactions O we

2. note long range
contribution

Figure: Tip/surface interaction.
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More sophisticated...
With long range cohesive forces

o(z) = Azforz< A
o(z) = Cz3forz>A

Rupture occurs when o(zpypt) = Otheo is of
the order

Ocrit =~ (A1/3C)1/4

Ref. Kohn 1979 [4]
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Lignes directrices

Energy picture — Brittle and semi-brittle fracture
General considerations
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Fracture: the energy release rate

Bottom line ? ? ?? ? ? ?
e A very unstable geometry :
fracture dA
. HOW much energy iS ><i""““““x ........

available 7 = stability
criterion for the fracture

EERRER
-

Figure: A crack with some remote

loading.
T
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da

Energy Release Rate — Peeling a =<
e Energy balance:
b
—F da=—-w b da
* Energy release rate: )
G=F/b=w l
‘ F

Figure: Peeling at 90°.

e No elastic deformation energy

e simplest example ever
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Energy release rate — Calculation
A bit of technique

Method
e equilibrium solution including co/ad-hesive energy

e from potential energy minimization
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Potential Energy Minimization
A 1-element model

e from potential energy minimization

e a simple example

£ = g(u— up)? — uF

dé = k(u— u)du— duF

—_— >
u

WWW—>

Figure: A simple spring
system under tension.




Potential Energy Minimization
A 1-element model

e from potential energy minimization

e a simple example

£ = g(u— up)? — uF

dé = k(u— u)du— duF

Equilibrium

Figure: A simple spring
system under tension.

The equilibrium value of u obeys d€ = 0 for all du or

F = k(u— up)




Energy release rate — Energy balance A &P

e from potential energy minimization

e fracture: general case

da<0 @)
“' Gcoh Z \r
E = gel — uodS contact ;1 cohesive é -
A zone zone

d¢ = 0

Figure: Schematics of the
cohesive zone

_______ 4
W SAINT-GOBAIN



Energy release rate — Energy balance
e from potential energy minimization
o fracture: general case

E = gel — uodS contact éll cohesive é
A zone zone
d¢ = 0

Figure: Schematics of the
cohesive zone

Contribution from the cohesive stresses

d {/ uadS} = / 0con(z)dzdA = wdA
surf 0




Bottom line

e Energy release rate —
working definition

_ dE
G = dA

0
or

d(Ee — F9)

g dA

e At equilibrium

G=w

9
N

da
e
bbb
-0

Figure: A crack with some remote

loading.
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A non-trivial example — the Double g ¢d=a.
Cantilever Beam ]
Eb [ h\? F
F = ith =—| -
ad  wit Q 2 (L)
1 Figure: DCB.
Ea(0,A) = 50«52

AIN



A non-trivial example — the Double g
Cantilever Beam
Eb [ h\?
F=aud with o = T (z)
1 o
Ee(0,A) = 50«5
Energy release rate
3ER3 §?
g = B @ at fixed grip
and )
6 ,(F _
= |
g= Eh3L <b) at fixed load

Figure: DCB.

AIN



e fixed grip is
isochoric

e fixed load is
isobaric

CC AN .. " ~nNNn 1

Energy landscape — Stability
fixed &

tot

Eadh

el

fixed F
E adh

E

tot

Figure: DCB at fixed grip (top) and fixed load

(bottom).




double cantilever beam — Application

thin film adhesion

o glass substrate Interface toughness measurements

and backing —
2
e multilayers 10 |- W= 24Jm R
deposited on the ° b Pt
&« 4 —
substrate E s // 1" w=08Jm’
1 ﬁ/‘ /'/l({
0 o

0 2 4 6 8x10°
(L+0.64h)* (mm*)

Figure: Application of DCB test for thin film
adhesion measurements.
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Crack branching — the Cook Gordon mechanism

_ E*weon . 4Ewint
o=1/ — and o =4/ ; (2)

Figure: Branching criterion for coating fracture.

W SAINT-GOBAIN




Crack branching — the Cook Gordon mechanism

_ E*Weon . 4Ewint
o=/ — and o =4/ ; (2)

Figure: Branching criterion for coating fracture.

Interface delamination
Weoh > 4T Wint J
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Energy release rate — the general case

Full 3D fracture + 441 (; + 41414
Energy release rate:
2a
o2a ﬁs
O=YvF
where 1) is a numerical constant TN
of the order of 1 ) -c

Figure: A 3D crack — half-penny.

AIN



Energy release rate — the general case

Full 3D fracture $ 444 (; + 4414

Energy release rate:

2
G =y %5

where 1) is a numerical constant TN
of the order of 1 -c

Figure: A 3D crack — half-penny.

Remote loading at rupture

=N (3)
AIN




Size effects in rupture
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Figure: Tensile strength — Griffith's data.
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g
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k=)
c
g 1000~
2
500 Pol
Wood olymers
@ siica
T T
0 1 2

Elastic limit (%)

Fig. 3 Amorphous metallic alloys combine higher strength than crystalline metal alloys
with the elasticity of polymers.

Figure: Strength distribution as a function of
"elastic limit" for various materials.

After Telford, Materials Today, March 2004.
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After Brow 2005 [8]

Ultimate tensile strain

99
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Figure: Rupture strain distribution for glass and
silica fibers.
)
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Glass fibers

1[)4 T L
- i Postthreshold
§ 10°F ! b
4 L 2 E
-g‘-' Subthreshold :
[% 102k g 4
a
H 21
Silica glass fibers : Sea
101 1 1 i 1
107 10° 10! 10* 10°
Indentation dimension, a (um)
Figure: Failure strength as a function of defect
size and nature.
.
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Semi-brittle materials

Silicon

el
o
T

T e

Probability (%)

7 momtmy

=]
—c-

0.5
Flexure strength (GPa)

Figure: Failure distribution as a function of size
of Si beam.

After Namazu 2000 [10] -



Lignes directrices

Energy picture — Brittle and semi-brittle fracture

Downscaling
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Pulling out a punch on a film TF
F = 7ma’E <%>
E = ma‘hx 5 (F)
o0& T~——__
g oma? |
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Rupture TF
e displacement:

Ed2 2a
w=—

2h

e mean stress T Ne——____

2Fw Figure: Punch on a thin film
=y @

v

The glue salesman paradox (Kendall 2001 [11])
The less glue the more it sticks (ie the larger the pull-out force) J

1

T
'The energy at rupture J Fdd = w but is difficult to measu@ruﬁ%’ﬂ F GOBAIN

stiffness)



Experimental results

1. Pull out test on The Merril Meissner data

cylindrical dies

Adhesion force

2. Variable glue joint 4=

increasing
film thickness

thickness 3
F
v 2
1 o v\theory
0
0 4 8 12 16

(disc diameter)*> D* cm’

Figure: Pull out force

After Kendall 2001 [11]
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Substrate constraint on film cracking

Energy release rate a I
%‘T
2 qv/ uf/ G,
3) g = wo? — - h
2
h
by ¢ = wla? [®] G,
] e )
C L2
E—

Figure: Substrate constraint on thin films.

After Cook 2002 [12]
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Impact of substrate constraint — compliant interlayer

1000

01
Relative Humidity: 40 + 5%

0.0 s —O— LD-CDO :
3um CDS on Si Organic Polymer

0.001
0.01

CDS crack growth velocity (um/s)

Polymer
Silicon

0.1 1
Buffer layer thickness/CDS thickness

Figure: Cross section (left) and crack velocity (right)
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Lignes directrices

Stress concentration and Process zone — Plastic deformation at the
crack tip
Stress distribution around the crack tip

T
SAINT-GOBAIN



Antiplane elasticity

Same quality, lower price...

Elastic fields and equilibrium

e deformation and stress

€ =Vu(x,y)

y

0 = UE
Figure: Deformation for

e equilibrium . .
antiplane elasticity

div(d) = 2uA(u)

Au=0
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Boundary conditions

Boundary conditions
e stress

o, =0 for 0 =%

e u is discontinuous on the fracture faces

Figure: Fracture
geometry in mode Il
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u=7Im(Q) with Q= Az!/?

1/2

_____________ SV

Figure: The stress distribution
around the crack tip.

ox = —Au/2r_%sin(0/2)
oy = Au/2r 2 cos(6/2)

Crack tip stress field

Figure: The stress distribution
around the crack tip.

v
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Direct Measurement of
Stress-Intensity Factor

==70 nm

bt
\
1000 oy
N
soo 3 N
_ 4
a
Q800 . .
s K =0.67 MPam'”
o 400 4
& =
o 200 -
0

PRI S P T
0 1 2 3 4 5 8
Distance from Crack Tip, r (um)

MRS
March 2008
Page 120l 19

Figure: Measured crack tip stress field. After Co T
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Connexion to the macroscopic lengthscale

With K = Au A slit crack
K2
g_TK
22u

Figure: Stress field distribution o,

4
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The lower lengthscale problem

Cohesive zone

Figure: Cohesive stress and singularity
regularization / Barenblat-Dugdale model
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The lower lengthscale problem

Animal pad division Size Effec‘F

lizards &
1000 |- i

spiders

N, (setae per 100 pm’)

n L " ul n . n ul
1E-5 1E4 1E3 001 01 1 10 100 1000

mass (g)

Figure: Various pads as a function . . functi
of FcEis, Figure: Pad division as a function of

weight.

v

After Arzt 2003 [14] @ T
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The lower lengthscale problem

Average stress

Animal pad division
a
A gap R
1.0 .
8
b 05
da<0 % N\
3
--I Gcoh(z) J‘ \
1 — > 0.0 =
contact cohesive
zone & zone © 0.01 1 100
ale
Figure: Cohesive zone. ) o )
) Figure: Cut-off with size reduction.

After Arzt 2003 [14]
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Lignes directrices

Stress concentration and Process zone — Plastic deformation at the
crack tip

Process zone and downscaling
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Rupture and macroscopic
plasticity
e plastic dissipation
contributes to the (steady
state) effective toughness
rSS
e extends over radius Rss

e yield stress:

s E
RSS

O'yz

After Wei 1999 [15]

f 1D

Figure: Two models for plastic
dissipation

voir cours de @ ForréSer,



Plastic process zone

Figure: Toughness as

2

g7

LR LN

a function of peak stress.

From Wei 1999 [15]

T
SAINT-GOBAIN



Toughness as a function of confinement

h {meters)

Figure: Three regimes of confinement.

y

From Hsia 1994 [16] @ SAIH‘FE(;EAIN




o Cu film Contribution of plastic dissipation

e Mao model based 120 . :
on [16] Current model ,J
100 Tl = — Mao&Li
e Present model O Dauskare /
80 [ @ Volinsky ;
based on: . ;
£ o ;i
&

Oy = 0y0 <1+\/I8E> h w /,”_

10 100 1000 10'
h, thickness, nm

Figure: Interfacial toughness as a function of
film thickness

4
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Size and strength — from Richter 2009 [18]

1
10 v
(e ) Ideal strength for pure Cu<110>
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] A 4 'y
10° a2t
© 0.“0 . ashd,
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10" « A
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Tensile strength of Cu whiskers

240
220
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160
140
120
100
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60

40

a-m,e(Kg/mma)

20—

LTy

dave W

Frc. 10. The average strength of copper whiskers as a function
of the reciprocal of the diameter.

From Brenner 1956 [19]
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182 MR. A. A. GRIFFITH ON

In 1858, KarMarsor® found that the tensile strength of metal wires could be repre-
sented within a few per cent. by an expression of the type

F=A+§...,.......[22)

where d is the diameter and A and B are constants.

From Griffith 1921 [7]
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Conclusion

Rupture
Beyond the physical rupture mechanisms at the interface
e intrinsically spans lengthscales

e intrinsically spans stress ranges

e involves specific material response
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