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Friction of viscoelastic elastomers with rough surfaces under torsional contact conditions
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Frictional properties of contacts between a smooth viscoelastic rubber and rigid surfaces are investigated using a
torsional contact configuration where a glass lens is continuously rotated on the rubber surface. From the inversion
of the displacement field measured at the surface of the rubber, spatially resolved values of the steady state
frictional shear stress are determined within the nonhomogeneous pressure and velocity fields of the contact. For
contacts with a smooth lens, a velocity-dependent but pressure-independent local shear stress is retrieved from the
inversion. On the other hand, the local shear stress is found to depend on both velocity and applied contact pressure
when a randomly rough (sand-blasted) glass lens is rubbed against the rubber surface. As a result of changes in
the density of microasperity contacts, the amount of light transmitted by the transparent multicontact interface is
observed to vary locally as a function of both contact pressure and sliding velocity. Under the assumption that the
intensity of light transmitted by the rough interface is proportional to the proportion of area into contact, it is found
that the local frictional stress can be expressed experimentally as the product of a purely velocity-dependent term,
k(v), by a term representing the pressure and velocity dependence of the actual contact area, A/A0. A comparison
between k(v) and the frictional shear stress of smooth contacts suggests that nanometer scale dissipative processes
occurring at the interface predominate over viscoelastic dissipation at microasperity scale.
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I. INTRODUCTION

Rubber friction is a topic of huge practical importance
in many applications, such as tires, rubber seals, conveyor
belts, and syringes, to mention only a few. However, there is
an incomplete understanding of the parameters that control
the frictional behavior of rubber surfaces. Since the seminal
experimental work by Grosh [1], rubber friction is usually
assumed to involve two dissipative components. The first one,
often denoted as the adhesive component, corresponds to ther-
mally and stress activated pinning and depinning mechanisms
between rubber molecules and the contacting surface. This
idea forms the basis of the Schallamach model [2], which
was subsequently extended by Chernyak and Leonov [3]. In
a later study, Vorvokalos and Chaudhury [4] also showed
that these models can consistently be used to describe the
dependence of friction of poly(dimethylsiloxane) (PDMS)
elastomers on molecular parameters such as molecular weight.
The second dissipative component involved in rubber friction
is assumed to correspond to viscoelastic losses associated
with the contact deformation of the soft rubber. In the case
of a hard, rough surface sliding on a viscoelastic rubber,
viscoelastic losses at microasperity scale occur at characteristic
frequency of the order of v/d where v is the sliding velocity
and d is a characteristic size of asperity contacts. This so-
called hysteretic component of friction was first evidenced
by Greenwood and Tabor [5] in a series of experiments,
in which hard spheres and cones were sliding or rolling
on well-lubricated rubber surfaces. The work by Grosh [1]
extended these investigations to the more complex situation of
rubber sliding on microscopically rough surfaces. A maximum
in friction was found to occur at a sliding velocity related to
the frequency with which the asperities of the rough surface
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deform the rubber surface. This maximum was absent on a
smooth track, thus reflecting the deformation losses induced
by the passage of the asperities over the rubber surface.
These frictional mechanisms involving viscoelastic losses at
microasperity scale have motivated the development of several
theoretical models starting from Fourier transform analysis
applied to periodic surfaces [6,7] to the more complex model
developed by Persson for rubber friction on randomly rough
surfaces [8,9]. Using a spectral description of the topography
of the rough surfaces, Persson’s theory predicts how the
component of friction force associated with hysteretic losses
varies with velocity and contact pressure from an estimate
of the actual contact area. Some experimental results tend to
support this theory [10], but a detailed examination of the
effects of surface topography on rubber friction remains very
challenging in the case of randomly rough surfaces where
adhesive and hysteretic components are strongly intricate.

In a previous work [11], we have investigated the friction
of a PDMS rubber with model rough surfaces consisting
of silica lenses covered with various densities of spherical
colloidal nanoparticles. From an examination of the pressure
dependence of the frictional shear stress, we showed that
the actual contact area was close to saturation in the whole
range of applied contact load and sliding velocity. These
model surfaces thus allowed quantifying the contributions of
interface dissipation and hysteretic losses to friction without
the complications arising from the pressure and velocity
dependence of the actual contact area. In addition, the use
of a monodisperse distribution of colloidal particles allowed
to control both the characteristic frequency associated with
deformation at asperity scale and the volume of the viscoelastic
substrate that is affected by this deformation. Within this
framework, we were able to determine experimentally the
hysteretic component of friction which compares well with
theoretical calculations. In this study we consider the more
realistic situation of a viscoelastic rubber sliding against a
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randomly rough rigid surface where the proportion of area
into contact is expected to depend on both the applied
pressure and the sliding velocity. Experiments are carried out
using a torsional contact configuration which, as explained
below, allows investigating frictional energy dissipation at
the interface without the complications arising from bulk
viscoelastic losses at the scale of the macroscopic contact. In
addition, the inversion of the measured displacement field at
the surface of the rubber provides local values of the frictional
shear stress within the nonhomogeneous pressure and sliding
velocity fields of the contact. Local changes in the density of
asperity microcontacts are evidenced from a measurement of
the amount of light transmitted through the transparent rough
contact.

In the first part of this paper, we consider the case of a
smooth contact where friction is likely to arise only from
molecular scale dissipation at the intimate contact formed
between the surfaces. In the second part, we examine the
pressure and velocity dependence of the frictional shear stress
within rough contacts where asperity scale viscoelastic losses
are likely to come into play. We show that the measured
shear stress can be expressed as the product of a velocity-
dependent term by a velocity- and pressure-dependent term
which describes the changes in the actual contact area as a
function of nominal contact pressure and sliding velocity. From
a comparison between the smooth and rough contacts, we
discuss in a last part the contributions of interface dissipation
and hysteretic losses to friction.

II. EXPERIMENTAL DETAILS

A. Materials and sample preparation

As a substrate, we use an epoxy-based rubber obtained
by crosslinking diglycidil ether of bisphenol A (DER 332,
Mw = 340g mol−1, Dow Corning) with a polyether-diamine
crosslinker (Jeffamine R© ED2003, Mw = 2003g mol−1, Hun-
stman Chemical). As detailed in Appendix A, this rubber
exhibits a significant change (about one order in magnitude)
in the loss modulus in the characteristic frequency range
(≈0.1–103Hz) involved in surface deformation at microasper-
ity scale. In order to elaborate the specimens, each of the
reactive parts is first separately stirred in a silicone bath at 70 ◦C
for about 30 min. Then epoxy is mixed with the stoichiometric
amount of diamine determined with the epoxy-equivalent
weight and amine hydrogen equivalent weight given by the
supplier (Jeffamine R© Data Sheets). The reactive mixture is
stirred and subsequently degassed for about 40 min at 50 ◦C
in a vacuum chamber. Then the mixture is poured into a
parallelepiped-shaped PDMS mold (size: 4.5 cm × 4.5 cm ×
1.5 cm) and cured at 120 ◦C for 20 h. In order to monitor
contact induced surface displacements, a square network of
small cylindrical holes (diameter 10 μm, depth 2 μm and
center-to-center spacing 70 μm) is stamped on the PDMS
surface. Once imaged in transmission with a white light, the
pattern appears as a network of dark points. This surface
marking is simply achieved by patterning the bottom part
of the PDMS mold by a network of cylindrical posts using
conventional soft lithography techniques. After curing, the
glass transition temperature of the epoxy rubber is −42 ◦C,
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FIG. 1. (Color online) Roughness power spectrum density (PSD)
of the sand-blasted glass lens as measured using AFM. Colors denote
different image sizes, from left to right: 50 × 50μm2 (green), 20 ×
20μm2 (red), 10 × 10μm2 (gray), 5 × 5μm2 (black), 0.5 × 0.5μm2

(purple).

as determined by differential scanning calorimetry (DSC) at a
scan rate of 10 ◦C min−1.

During friction experiments, the rubber specimen is con-
tacting a plano-convex BK7 glass lens (Melles Griott, France)
with a radius of curvature of 14.8 mm. After cleaning, the
root-mean-square roughness of the lens is less than 2nm,
as measured by AFM using 1 × 1μm2 pictures. One of the
lenses is rendered microscopically rough using sand blasting
(average grain size of 60 μm). The topography of the surface
has been characterized by AFM measurements using image
sizes ranging from 50 × 50μm2 to 500 × 500 nm2. Figure 1
depicts the results in the form of a roughness power spectrum
density (PSD) Cs(q). This PSD decays according to a power
law, from 50 μm down to the nanometer scale. Accordingly,
the surface roughness can be defined as a self-affine fractal
[Cs(q) ∝ q−2(H+1)] with a Hurst exponent H = 0.58 and
a fractal dimension Df = 3 − H = 2.42. The root-mean-
square roughness of the sand-blasted surface is measured as
1.69 ± 0.19μm using 50 × 50 μm2 images.

B. Friction setup and contact imaging

Contact torsion experiments are carried out using a custom-
made device which is fully described in Ref. [12]. The
experiments consist in rotating continuously a glass lens about
an axis perpendicular to the surface of the rubber substrate
and passing through the apex of the lens. Normal contact
is achieved under an imposed indentation depth condition
(between 60 and 320 μm) by means of a linear displacement
stage. The resulting contact radius lies in the range 0.3–
2.2 mm. Specimen size (4.5 cm × 4.5 cm × 1.5 cm) ensures
that the ratio of the substrate thickness to the contact radius is
greater than 10, i.e., that semi-infinite contact conditions are
achieved during torsion experiments [13]. Separate indentation
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FIG. 2. Schematic description of the parallel light system used to
illuminate the contact region. (a) optical fiber light; (b) microscope
objective; (c) pinhole; (d) convex lens; (e) contact lens; (f) rubber
specimen; (g) CMOS camera.

experiments using the same device equipped with a load cell
allowed to determine the relationship between indentation
depth and normal load (the load cell has to be removed during
torsional contact experiments for imaging purposes). During
friction experiments, the glass lens is rotated at imposed
angular velocity between 0.01◦ and 10◦s−1 using a motorized
rotation stage. Prior to use, the lenses are successively cleaned
with acetone and ethanol in an ultrasonic bath for about
5 min. Epoxy-based specimens are thoroughly washed with
2-isopropanol and subsequently dried under vacuum.

During torsion, images of the contact zone are continuously
recorded through the transparent rubber substrate using a zoom
lens and a CMOS camera. The system is configured to a frame
size of 1024 × 1024 pixels with 8 bits resolution. Images are
acquired at a frequency ranging from 0.01 to 30 Hz. The
contact zone is illuminated using a parallel light system located
behind the glass lens, as schematically described in Fig. 2. In
the case of the smooth contact interface, subpixel detection
of individual markers on the epoxy surface is carried out
directly from single images taken during steady state friction
[as that shown in Fig. 3(a)] using a particle tracking method.
Each contact picture provides a displacement field with about
6000 data points with a spatial resolution corresponding to
distance between markers (i.e., 70 μm). In the case of rough
interfaces, the contact appears as bright spots against a darker
background as a result of light scattering by the roughened
surface [Fig. 3(b)]. It is therefore no longer possible to detect
the markers on the rubber surface on a single image. However,
an averaging procedure allows revealing the location of the
markers under steady state friction. As shown in Fig. 3(c),
averaging several images taken during steady state friction
suppresses nearly all the light intensity fluctuations induced
by surface roughness, thus allowing us to reveal the location
of the markers which are fixed with respect to the camera.

III. FRICTION OF SMOOTH CONTACTS

When the smooth lens is twisted starting from rest, a
stiction stage is first encountered which corresponds to the
shear failure of the adhesive contact. This stiction process
occurs according to a fracture-like process characterized by
progressive slip propagation from the periphery to the center
of the contact. This phenomenon was discussed in a previous
study [12], and it will not be considered further in this paper.
In the case of the investigated epoxy rubber, this transient
stiction phenomenon occurs for twist angles θs � 50◦ for all
indentation depths and angular velocities under consideration.

500 µm

 (a) 

 (b) 

 (c) 

FIG. 3. Contact pictures taken during steady state friction.
(a) smooth contact; (b) rough contact; (c) rough contact after image
averaging. Averaging allows suppressing most of the light intensity
fluctuations due to the rotating rough surface. The dot lattice on the
rubber surface then becomes apparent.
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FIG. 4. Azimuthal displacement of an individual marker on the
surface of the rubber substrate as a function of the applied twist angle
(angular displacement rate: 3◦ s−1). The marker is located at a radial
coordinate r = 0.63 mm, the contact radius is a = 1.12 mm (smooth
lens).

Then a steady state friction state is achieved as indicated
by the time independence of markers location on the rubber
surface. As an example, Fig. 4 depicts the displacement of
an individual marker located within the contact as a function
of the applied twist angle. Owing to the symmetry of the
contact, this displacement is expressed using its cylindrical
components with respect to the center of rotation (only the
azimuthal displacement component uθ is reported in the
figure as the radial displacement component ur is found to
be systematically negligible in all experiments). After an
initial increase corresponding to the stiction stage (θ � 40◦),
a steady state is achieved. Here the time-independent location
of the marker is indicative of the achievement of a vanishing
strain rate within the bulk rubber substrate. This means that
no significant relaxation process takes place at the scale of
the contact within the considered time window. The bulk
substrate can thus be considered as deformed in a relaxed,
time-independent, state.

Figure 5 shows a typical displacement field obtained with
the smooth contact under such a steady state friction condition.
From this measured displacement field, the corresponding
contact stress distribution can be retrieved using an appropriate
inversion procedure. In a previous study dealing with linear
sliding of silicone rubbers [14], we showed that an inversion
method based on a linear elastic contact mechanics approach
can be inaccurate due to the occurrence of finite strains at
the edge of the contact. A finite elements (FE) inversion
procedure was thus developed in order to handle the associated
geometrical and material nonlinearities. Here a calculation
of the surface shear strain εrθ = 1/2 (∂uθ/∂r − uθ/r) from
the measured azimuthal displacement profiles (bottom part
of Fig. 5) shows that strains as high as 0.3 are achieved at
the vicinity of the contact edge, which are also outside the
linear range of the epoxy rubber (about 0.1). In order to
evaluate the effects of these nonlinearities on the inversion,
a displacement field was inverted using either a linear elastic
approach based on Green’s tensor or a FE method able to
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FIG. 5. (Color online) Steady state displacement field within a
smooth contact (angular velocity: 3◦s−1, indentation depth: 100 μm).
(a) image of the azimuthal displacement field; (b) radial profile of
the azimuthal displacement (dots) and of the associated surface shear
strain εrθ (blue dotted line). The plain black line corresponds to the
fit of uθ which was used to calculate the surface strain.

handle the geometrical and material linearities of the problem.
The results reported in Appendix B show that both approaches
give the same result. It therefore turns out that finite strains do
not induce any significant error in a linear elastic inversion
of torsional displacement, which can be justified by some
theoretical considerations [15]. As a result, all the stress fields
to be reported in this study have been obtained from the
semianalytical deconvolution of the measured displacement
fields using the Green’s tensor approach fully detailed in
Ref. [16].

The surface shear stress distribution of the smooth contact
interface was systematically determined from the inversion
of the measured steady state azimuthal displacements at
various indentation depths and angular velocities. All the
shear stress data obtained from the inversion are expressed
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FIG. 6. (Color online) Steady state frictional stress within a
smooth contact interface (indentation depth: 60 μm). (a) image of the
shear stress distribution (angular velocity: 3◦s−1); (b) radial profiles
of the shear stress. Angular velocities from bottom to top: 0.3◦, 1◦,
and 3◦s−1. The shear stress is normalized with respect to the relaxed
modulus, Er , of the rubber.

in a nondimensional form, τ̄ (r) = τθz(r)/Er , where Er is the
relaxed elastic modulus of the rubber. As shown in Fig. 6(a),
a nearly constant frictional shear stress is achieved within
the contact zone except at the center of the contact where
shear stress vanishes for symmetry reasons. Contact pressure
being expected to decrease continuously along the contact
radial coordinate, it turns out that frictional shear stress is
pressure independent, as already reported for smooth glass-
PDMS contacts [12,16]. A close examination of stress profiles
obtained at various imposed velocities [Fig. 6(b)] shows a
systematic positive gradient along the radial coordinate, which
should reflect the velocity dependence of the interface shear
stress. This assumption was further considered from a plot
of the measured local shear stress values as a function of
the local sliding velocity v = θ̇ r , where θ̇ is the angular
velocity and r is the radial coordinate. According to a previous
investigation [12], the transition to a vanishing frictional stress
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FIG. 7. (Color online) Master curve giving the reduced local shear
stress as a function of the local sliding velocity within a smooth
contact. Imposed velocities from left to right: 0.01◦, 0.03◦, 0.1◦,
0.3◦, 1◦, and 3◦s−1. The dotted line represents the change in the loss
component of the shear modulus G′′ as a function of λω, where ω is
the frequency and λ is a typical length set to 6 nm (the curve has been
shifted horizontally in order to allow a comparison with the shape of
the reduced shear stress plot).

in the vicinity of the contact center occurs over a length scale
which represents about 10% of the contact radius and which
is essentially dictated by the cutoff frequency of the decon-
volution operation. As a result, data points close to the center
of the contact (r/a < 0.1 where a the contact radius) were
discarded from the analysis together with data points outside
the contact area (r/a > 1). As shown in Fig. 7, all the selected
shear stress values merge on a single master curve when the
applied angular velocity is varied. Over nearly three orders of
magnitude in the sliding velocity, the shear stress is observed
to increase continuously by about a factor three. The shear
stress being measured in a steady state friction regime where
no displacement occurs at the macroscale, it is thus associated
with small-scale dissipative processes. For such a smooth and
intimate contact, friction is usually considered to arise from
molecular scale dissipative processes occurring at the sliding
interface. As mentioned in the Introduction, formation and
breakage of adhesive molecular bonds at the contact interface
is often invoked as the underlying physical mechanism [2,3].
For rubber sliding on optically smooth glass, Grosh [1] noted
that the velocity corresponding to maximum friction and the
frequency corresponding to maximum viscoelastic loss form
a ratio that is on the order of 7 nm for various materials. This
nanometric length scale was assumed by Grosh to represent
the molecular scale involved in the pinning and depinning
process of molecular chains to the glass surface. Here the
available frequency and sliding velocity ranges do not allow
to extract a very accurate value of this characteristic length
scale. However, it can be seen in Fig. 7 that the shape of the
τ̄ (v) plot matches that of the loss component of the shear
modulus, G“, when the latter is represented as a function of
λω where ω is the frequency and λ is a characteristic length
close to 6 nm. In the following section, we address frictional
dissipative processes occurring at larger length scales, i.e., at
the scale of microasperity contacts within the rough contact
interface.
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FIG. 8. (Color online) Shear stress profiles obtained for various
indentation depths and imposed angular velocities. (a) indentation
depth, from bottom to top: 60, 100, and 140 μm; velocity: 1◦s−1.
(b) imposed velocity from bottom to top: 0.01◦, 0.03◦, 0.1◦, 0.3◦, and
1◦s−1; indentation depth: 100 μm.

IV. FRICTION OF ROUGH CONTACTS

A. Shear stress field

In this section we report on the frictional properties of the
contact interface between the smooth viscoelastic elastomer
and the sand-blasted glass lens. As opposed to smooth contact,
a dependence of the local frictional shear stress on contact
pressure is now evidenced. As an example, shear stress profiles
for various indentation depths are reported in Fig. 8(a). The
shear stress is clearly decreasing along the radial coordinate,
i.e., when the contact pressure decreases. Similarly, increasing
applied indentation depths (i.e., contact pressure) result in
enhanced shear stress values. Such a pressure-dependent
frictional stress can be qualitatively accounted by the existence
of a multicontact interface where discrete microcontacts are
distributed within the frictional interface. As the local contact
pressure is increased, a higher density of microcontacts is
achieved, which in turn results in an enhanced local frictional
shear stress. In addition, a velocity dependence of the shear
stress similar to that observed with smooth contacts is also
evidenced [Fig. 8(b)]. Here, the analysis of the local shear
stress distribution is complicated by the fact that the local
density of microcontacts depends not only on contact pressure

but also potentially on the local sliding velocity as a result of
viscoelastic effects. In the following section, the changes in
the density of microcontacts as a function of local pressure
and velocity are further considered from an examination of
fluctuations in the light transmitted by the transparent rough
contacts.

B. Optical transmissivity of the multicontact interface

Some interesting features of the rough contacts emerge
when the changes in the light transmitted locally by the
interface are considered. As mentioned above, rough contacts
appear as spatially heterogeneous as a result of the scattering
nature of the glass surface [cf. Fig. 3(b)]. Because of the
difference between the index of refraction of the solids and that
of the air, the rough interface transmits light more efficiently
when the surfaces are in intimate contact than when they are out
of contact. No complete optical model is available to describe
these effects, but, as a first approach, one can neglect scattering
and just consider light transmission in contact and noncontact
regions of the rough interface. Obviously, light transmission
will be more efficient if only one interface is present (contact
condition) instead of two (noncontact condition). Accordingly,
the intensity of transmitted light at a given location within the
rough contact should carry information about the actual area of
microasperity contacts. Such an idea was initially developed by
Dietrich and Kilgore [17,18] in a study where the actual contact
area between rough transparent materials was determined
from microscope contact observations. The relevance of this
approach to rough contacts interfaces involving polymers was
subsequently demonstrated in later studies by Scheibert et al.
[19], Rubinstein and co-workers [20], and Krick et al. [21]. As
discussed by Dietrich and Kilgore, the analysis of the images
can be complicated by various optical scattering and resolution
effects (especially at the edges of microcontacts), which
requires appropriate deconvolution procedures if one wants
to get a quantitative measurement of the actual contact area
from contact images. Here contact images will be analyzed
under the assumption that transmitted light intensity at a given
contact location is proportional to the proportion of area into
contact. As detailed below, the validity of this assumption
is supported by static indentation experiments carried out at
various imposed indentation depths. In order to improve the
signal to noise ratio of the camera, each static contact image at
a given prescribed indentation depth is obtained by averaging
300 images. A reference image is also obtained in the same
way using a noncontact configuration. When subtracted to the
contact image, this reference image enforces the background of
the image to be almost zero thus allowing to clearly identify the
size of the circular contact region. For each pixel, a normalized
transmitted light intensity In is defined as

In = Ic − Ir

Ir

, (1)

where Ic is the measured light intensity under contact con-
ditions and Ir is the corresponding intensity in the reference
image (without contact). Here it should be kept in mind that
the transmitted light intensity measured at the length scale of a
pixel (5 × 5 μm2) is characteristic of a multicontact interface
as a result of the self-affine fractal nature of the glass surface.
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FIG. 9. (Color online) Transmitted light intensity during static
indentation experiments. (a) Normalized intensity profiles obtained
at increasing applied indentation depth (from 20 to 300 μm by 20 μm
steps, from bottom to top). (b) Reduced profiles obtained by dividing
the normalized intensity and the radial coordinate by the average
pressure pm = P/πa2 and the contact radius a, respectively (P is
applied normal load).

Normalized radial intensity profiles are subsequently obtained
from an angular average of the normalized images with respect
to an origin defined by the apex of the lens. Results are shown
in Fig. 9(a) where the profiles can be seen to be shifted to higher
light intensity values when indentation depth is increased.
Interestingly, it comes out that all the profiles obtained at
various contact loads collapse onto a single plot [Fig. 9(b)]
when intensity data are normalized with respect to the average
contact pressure pm = P/πa2 (P is the applied normal load)
and the radial coordinate is normalized with respect to contact
radius a. If the local contact pressure σzz is assumed to scale
as σzz(r/a) ∝ P/πa2f (r/a) (where f is some function of the
space coordinate), this means that transmitted light intensity
scales locally with the applied contact pressure. This result
is further illustrated by the linear relationship between the
integrated light intensity transmitted through the rough contact
area and the applied normal load (Fig. 10). It is noteworthy that
a similar result was obtained by Rubinstein et al. [22] using
a different optical technique where a laser sheet is incident
on a contact interface between two rough PMMA blocks at
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FIG. 10. Integrated normalized light intensity transmitted
through the rough contact as a function of normal load (static
indentation).

an angle far beyond the angle for total internal reflection
from the PPMA-air interface. Under the assumption that the
transmitted light intensity is proportional to the proportion of
area into contact, the observation of such a linear relationship is
consistent with many rough contact theories [9,23–25] which
predict that the actual contact area varies linearly with the
applied load, at least in the low load range. Accordingly we
will make the assumption that the recorded light intensity at a
given pixel location is proportional to the proportion of area
into contact, In ∝ A/A0, where A and A0 are the actual and
nominal contact areas, respectively. For the surface topography
under consideration, this hypothesis is supported by the above
reported indentation experiments even if it is not necessarily
valid for any kind of roughness.

During steady state friction, a systematic change in the
distribution of transmitted light within the contact is observed
not only as a function of the applied indentation depth but
also as a function of the imposed angular velocity. In order to
quantify these changes, the following treatment is applied to
the recorded contact images. For a given indentation depth and
applied velocity, sequences of images such as that shown in
Fig. 3(b) are averaged. The resulting time-averaged picture is
subsequently averaged as a function of the angular coordinate
with respect to the center of rotation in order to get a radial
profile. For normalization purposes, a light intensity profile
is also obtained using the same averaging procedure with
a sequence of images where the rotating lens is close to
but not in contact with the rubber surface. An example of
the resulting profiles is shown in Fig. 11 for an indentation
depth of 140 μm and various velocities ranging from 0.01◦
to 1◦s−1. At a given location within the contact, i.e., for a
given contact pressure, it turns out that the amount of light
transmitted locally through the rough contact interface is
decreasing as the local sliding velocity is increased. There
is thus some evidence that microcontacts at the frictional
interface are redistributed as a function of the sliding velocity,
more precisely that the proportion of area in contact decreases
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FIG. 11. (Color online) Radial profiles of the normalized trans-
mitted light intensity for various imposed angular velocities (indenta-
tion depth: 100 μm). Imposed angular velocities from top to bottom:
0.01◦s−1 (black), 0.03◦s−1 (red), 0.1◦s−1 (green), 0.3◦s−1 (blue), 1◦s−1

(purple).

at high sliding velocities. Recalling the assumption that light
intensity is proportional to the proportion of area into contact,
i.e., In(p,v) ∝ A(p,v)/A0 the dependence of the frictional
shear stress on the actual contact area should therefore be
reflected by the ratio τ (p,v)/In(p,v). When this ratio is plotted
as a function of the local sliding velocity, it comes out that all
the data point obtained at various imposed angular velocity
and applied indentation depth merge on a single master curve
(Fig. 12). Remarkably, this master curve is independent on the
contact pressure (i.e., on both the location within the contact
and on the imposed indentation depth). From this observation,
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FIG. 12. Normalized ratio of frictional shear stress to transmitted
light intensity as a function of the sliding velocity. The experiments
are carried out using three different indentation depths: (◦) 60 μm,
(�) 100 μm, and (�) 140 μm. The shear stress is normalized with
respect to the relaxed modulus of the rubber and the light intensity
according to Eq. (1). The dotted line correspond to the normalized
shear stress measured with the smooth contact (data from Fig. 7).

the measured local shear stress can thus be expressed as

τ (p,v) = k(v)In(p,v) ∝ k(v)A(p,v)/A0. (2)

V. DISCUSSION

From the inversion of the displacement field at the surface
of a viscoelastic rubber contacting a rigid spherical asperity,
local values of the steady state frictional shear stress were
determined under torsional contact conditions. For rough
contacts, measured values of the local shear stress are
representative of a multicontact interface under given sliding
velocity and nominal contact pressure conditions. In addition,
information about the local proportion of area into contact
A/A0 is provided from contact images under the assumption
that optical transmittivity of the rough interface is proportional
to A/A0. As detailed above, this assumption is supported by
separate static indentation measurements where it yields the
expected linear relationship between the actual contact area
and the applied nominal contact pressure. From a systematic
investigation of the local shear stress and transmitted light
intensity as a function of the applied indentation depth and
twisting rate, it is found experimentally that the frictional shear
stress can be expressed as the product of two terms [cf. Eq. (2)].
The first one, A/A0, incorporates the velocity and pressure
dependence of the microcontacts density. The second one is
a pressure-independent term, k(v), which can be viewed as
some averaged measurement of the amount of frictional energy
dissipated within microcontacts. In other words, A/A0 corre-
sponds to a contact mechanics term describing the density of
microcontacts under steady state sliding while k(v) quantifies
the dissipative processes at play within asperity microcontacts.

As shown by the dotted line in Fig. 12, it can interestingly
be noted that the magnitude of k(v) is similar to that of the
frictional shear stress measured for smooth contacts and that
it follows a very similar velocity dependence. This suggests
that frictional energy dissipation within microasperity contacts
is mostly due to interfacial dissipation, the contribution of
viscoelastic losses at asperity scale being negligible. This
statement can be further considered within the framework of
the friction model detailed in the introduction. Accordingly,
the frictional force is assumed to arise from two independent
contributions, namely, the so-called adhesive and hysteretic
components. The so-called adhesive term encompasses all
dissipative mechanisms occurring at the points of intimate
contact between the solids, i.e., on length scales lower than
asperity size. The hysteretic term corresponds to the force
required to displace the rubber material from the front of
the rigid asperities. Here, it represents the contribution of the
viscoelastic losses involved in the deformation of the rubber
substrate by microasperities. Rewritten in terms of shear stress,
this model can be expressed as

τ = τh + τa, (3)

where τa and τh are respectively the adhesive and hysteretic
terms. The adhesive term can simply be expressed as

τa = τ0
A

A0
, (4)

where τ0 is the frictional shear stress of the smooth contact
interface.
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An exact calculation of the hysteretic component τh is much
more complicated as it implies to solve the viscoelastic contact
problem taking into account the whole frequency distribution
associated with the topography of the self affine rough surface.
As a first order approximation, we follow a simple approach
where the rough surface is assimilated to a distribution of
identical, noninteracting, spherical asperities. Following a
calculation by Greenwood and Tabor [5], the friction force
at the scale of a single asperity can be expressed as

Fasp = α
Eeff

4

a4

R2
, (5)

where R is the radius of curvature of the asperity and Eeff is a
frequency-dependent effective modulus defined as

Eeff(ω) = |E(ω)|
1 − ν2

, (6)

where ω is a characteristic frequency defined as ω = v/a and
ν is the Poisson’s ratio whose variations with frequency are
neglected. In the above equation, α is term representing the
fraction of the input elastic energy which is lost as a result
of viscoelastic dissipation. The hysteretic frictional stress can
thus be written as τh = φFasp where φ denotes the surface
density of asperities. φ = A/(πa2A0) thus allowing us to
express τh as

τh = α
Eeff

4π

A

A0

( a

R

)2
. (7)

As an upper bound value for τh, one can take a ≈ R, which
gives

τh ≈ α
Eeff

4π

A

A0
. (8)

From Eqs. (4) and (8), the total frictional stress within the
rough interface can thus be expressed as

τ = A

A0

(
τ0 + α

Eeff

4π

)
. (9)

Within the investigated sliding velocity range (0.1 to
100 μm s−1), the adhesive term τ0 is found to vary between 0.2
and 0.5 MPa (Fig. 7). The estimate of the second, viscoelastic
term, in the right-hand side of Eq. (9) requires a knowledge
of the dissipation factor α. Following an exact viscoelastic
calculation by Persson [26], we take for α an asymptotic (low
velocity) value calculated as α ≈ 5 tan δ where tan δ is the loss
tangent of the rubber substrate. Using this approach and the
viscoelastic data reported in the Appendix, the viscoelastic
term αEeff/4π is found to vary between 0.05 and 0.1 MPa
when the characteristic frequency varies between 0.1 Hz and
1 kHz. This simple calculation thus yields an estimate of the
hysteretic term which is found to be about half the magnitude
of the interface term. The rough approximations embedded in
the calculation do not really allow to draw a definite conclusion
from a difference of less than one order of magnitude. Here it
can just be stated that the above calculation does not contradict
the fact that the interfacial contribution to friction could be the
dominant term, as suggested by the similarity between k(v)
and τ0(v). However, this calculation is based on a very crude
description of the contact interface, which is assumed to consist
of a distribution of identical, noninteracting, single-asperity

contacts. As a result, topographical features of the surface such
as root-mean-square roughness, fractal dimension, or correla-
tion length are not taken into account. A more refined approach
to the hysteretic component to friction would require that the
multiscale features of surface topography as well as nonlinear
effects encountered during deformation at microasperity scale
are accounted for. Some of these features are embedded within
theoretical rough contact models such as that developed by
Persson [9], but using these models would require extensive
calculations which are beyond the scope of this study. From
an experimental perspective, more insights into the adhesive
and hysteretic components to friction could be gained from
experiments where the physical chemistry of the glass surface
is varied (using silanization, for example) independently of the
viscoelastic properties of the rubber or, conversely, where
the viscoelasticity of the substrate is changed independently of
the properties of the glass surface. When doing so, one should
take care to the potential occurrence of stick-slip motions or
friction instabilities which would preclude such an analysis.

VI. CONCLUSION

Using contact imaging approaches, we were able to de-
termine the distribution of frictional stresses within contacts
between a smooth viscoelastic rubber and a rigid rotating lens.
When the lens surface is made randomly rough, the local
frictional stress is observed to be dependent on both contact
pressure and sliding velocity as a result of the multicontact
nature of the sliding interface. Associated changes in the
local density of microcontacts are evidenced from variations
in the distribution of the light intensity transmitted through
the rough contact interface. From separate static indentation
experiments, it is shown that all the light intensity data obtained
locally at various contact loads and contact locations can be
represented in the form of a single master curve, which strongly
supports the scaling of the transmitted light with the nominal
contact pressure, at least for the considered rough surface.
Accordingly, the theoretical prediction of a linear relationship
between the proportion of area in contact and contact pressure
is retrieved experimentally. More importantly, the combination
of local stress and light intensity measurements allowed us to
separate the contributions of two mechanisms when contact
pressure or velocity is varied. The first one consists in a de-
crease in the local density of microcontacts when the pressure
decreases or the sliding velocity increases. The second one
encompasses all the frictional dissipative processes occurring
within microasperity contacts. A comparison between smooth
and rough contacts suggests that dissipative processes occur-
ring at the interface predominate over viscoelastic dissipation
at microasperity scale. More generally, these results open the
way to a close reexamination of the validity of the hypothesis
embedded in most rubber friction models, especially the
assumption that friction can be separated into an adhesive
and an hysteretic component.
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APPENDIX A: LINEAR VISCOELASTIC MEASUREMENTS

The selected epoxy rubber is characterized by a crystalliza-
tion of the flexible chains of the polyether-diamine crosslinker
at low temperature (−20 ◦C). As a result, it is not possible
to determine the room temperature viscoelastic modulus of
the rubber over an extended frequency range using the usual
route of master curves and time-temperature superposition
principle. Instead, we used two complementary techniques to
determine the frequency dependence of the viscoelastic mod-
ulus at room temperature. Up to 20 Hz, the shear modulus was
measured using conventional dynamical mechanical thermal
analysis (DMTA). Elastomer disks 2 mm in thickness and 8
mm in diameter are sheared at low strain (0.05 %) between
the parallel plates of a rheometer (Anton Paar, MCR 501). The
shear modulus is measured at room temperature during a fre-
quency sweep between 50 and 0.01 Hz. In the high-frequency
range (up to 10 kHz), the viscoelastic modulus is measured
using surface fluctuation specular reflection (SFSR) spec-
troscopy, a technique based on the principle that surface fluctu-
ations reveal the properties of the medium. The principle of this
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FIG. 14. Shear stress derived from the inversion of the same
displacement field using either a linear contact mechanics approach
(continuous line) or a FE calculation taking into account the
geometrical and material nonlinearities (dotted line).

technique is fully described in Refs. [27,28]. The results of
both viscoelastic measurements are shown in Fig. 13.

APPENDIX B: INVERSION OF THE DISPLACEMENT
FIELD: COMPARISON BETWEEN GREEN’S TENSOR AND

FINITE ELEMENT CALCULATIONS

In order to evaluate the influence of finite strains on
the inversion of displacement fields, the same azimuthal
displacement profile was inverted using both a linear elastic
approach based on Green’s tensor [16] and a finite element
(FE) inversion procedure which is fully described in Ref. [14].
As opposed to Green’s tensor calculations, the FE inversion
is able to take into account both the geometrical and material
nonlinearities (neo-Hookean behavior of the rubber) of the
problem. As shown in Fig. 14, identical shear stress profiles
are provided by both methods. In other words, the occurrence
of finite strains at the edge of the contact (see Fig. 5) does
not induce any significant error in the stress field deduced
from an inversion using a linear elastic analysis. It should be
noted that this conclusion is opposed to that drawn for linear
sliding conditions: In this case, finite strains were found to
alter significantly the accuracy of linear inversions [14]. Some
theoretical justifications for this difference can be found in
finite strain analytical calculations [15].
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