Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects

The unfortunate recent collapse of the Morandi bridge in Genoa has reminded us of the importance of the degradation of concrete and cement with time. For example, cement is attacked by sulfate ions in seawater or underground, leading to expansion, strength loss and eventually the catastrophic loss of structures such as bridges. Cement expansion is usually related to ettringite and gypsum precipitation. However, despite numerous studies and expertise, the exact degradation mechanisms remain unclear and controversial. We have thus conducted a study of this mechanism in collaboration with a private company, Bouygues, and an academic partner, IFSTTAR. It aimed to characterize the possible altered zone and to identify the mechanisms of degradation under sulfate attack. The analysis of the physical and chemical aspects of this phenomenon shows that two modes of transfer occur: transfer of sulfate ions to the cement matrix and leaching of calcium ions to the external solution. The analysis of the chemical composition of the affected material highlights the progressive consumption of portlandite at the surface, the decalcification of C-S-H and the formation of AFt from both Afm and aluminum incorporated in C-S-H.

If you want to know more
O. OmikrineMetalssi, F. Barberon, J.-M. Torrenti, N. Roussel, L. Divet, J.-B. d’Espinose de Lacaillerie, Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects, Cement and Concrete Research, 116, pages 134-145 (2019)

https://doi.org/10.1016/j.cemconres.2018.11.006

Top



See also...

Dual Marangoni effects and detection of traces of surfactants

In an article recently published in Soft Matter Journal, we report controlled and tunable Marangoni flows resulting from concentration gradients (...) 

> More...

Internal field 59Co NMR study of cobalt-iron nanoparticles

The catalytic growth of carbon nanotubes by catalytic carbon vapor deposition (CCVD) can be performed on variety of Co, Fe, and Ni catalysts. It (...) 

> More...

 

Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Enginering and Science Laboratory - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05
FRANCE

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq, M.-T. Mendy & M. Hirano-Courcot
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here