Internal field cobalt NMR unveils new pathways for green chemistry

Carbon hydrogasification is the slowest reaction among all carbon-involved small molecule transformations. However, using mechanochemistry, a team at UNIST (South Korea) discovered that the reaction rate is dramatically enhanced by up to 4 orders of magnitude compared to the traditional thermal method.

Using internal field Cobalt NMR, we demonstrated that this extreme increase in reaction rate originates from the continuous activation of reactive carbon species with a cobalt catalyst though the formation of a cobalt carbide via mechanochemistry. This collaborative work between UNIST and the SIMM laboratory is expected to advance studies of carbon hydrogasification, and other solid-gas reactions crucial for the energy transition.

If you want to know more
G. Han, P. Zhang, P. Scholzen, H. Noh, M. Yang, D.H. Kweon, J. Jeon, Y.H. Kim, S. Kim, S. Han, A.S. Andreev, G. Lang, K. Ihm, F. Li, J. d’Espinose de Lacaillerie, J. Baek, Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry, Angew Chem Int Ed. (2022).


See also...

Quantifying Molecular Damage during Elastomer Fracture

When rubbery materials (elastomers) are stretched, they typically extend elastically and spring back to their original shape. However, if (...) 

> More...

Contact of a spherical probe with a stretched rubber substrate

In a recently published paper, we report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean (...) 

> More...


Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Sciences and Enginering - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here
Legal notes