Internal field cobalt NMR unveils new pathways for green chemistry

Carbon hydrogasification is the slowest reaction among all carbon-involved small molecule transformations. However, using mechanochemistry, a team at UNIST (South Korea) discovered that the reaction rate is dramatically enhanced by up to 4 orders of magnitude compared to the traditional thermal method.

Using internal field Cobalt NMR, we demonstrated that this extreme increase in reaction rate originates from the continuous activation of reactive carbon species with a cobalt catalyst though the formation of a cobalt carbide via mechanochemistry. This collaborative work between UNIST and the SIMM laboratory is expected to advance studies of carbon hydrogasification, and other solid-gas reactions crucial for the energy transition.

If you want to know more
G. Han, P. Zhang, P. Scholzen, H. Noh, M. Yang, D.H. Kweon, J. Jeon, Y.H. Kim, S. Kim, S. Han, A.S. Andreev, G. Lang, K. Ihm, F. Li, J. d’Espinose de Lacaillerie, J. Baek, Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry, Angew Chem Int Ed. (2022).

https://doi.org/10.1002/anie.202117851.


Top



See also...

Van der Waals forces modify the fluctuations of the surface of a liquid film

This effect has been measured in collaboration between SIMM, SVI (Saint-Gobain-CNRS) and LOMA (Univ. Bordeaux) As a result of thermal motion, the (...) 

> More...

Shape and stress relaxation in gelling droplets

Encapsulation is a process that enables to protect, transport and deliver active species in dedicated areas. One encapsulation process is the (...) 

> More...

 

Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Sciences and Enginering - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05
FRANCE

  • Chair : E. Barthel
  • Steering Committee : J.B. d’Espinose, A. Chateauminois, Y. Tran, B.Bresson
  • Administration : F. Decuq & Odile Neveu
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin & M. Hanafi

Getting here
Legal notes