Shape and stress relaxation in gelling droplets

Encapsulation is a process that enables to protect, transport and deliver active species in dedicated areas. One encapsulation process is the alginate/calcium dripping method, where droplets of a biopolymer, alginate are dripped on a calcium bath where the calcium ions diffuse into the polymer droplets and bind the molecules together to obtain a hydrogel bead. We investigate the shape relaxation of these gelling droplets. We show experimentally and numerically that a gelled layer grows at the surface. Due to volume contraction of the gelling shell, this layer induces tensile stresses and drives a ow in the ungelled liquid core, resulting in the relaxation of the droplets toward spherical shapes. Over time the thickness of this elastic membrane grows hence the bending stifness required to change its shape eventually balances the surface stresses, which arrests the relaxation process.
These results provide general rules to understand the shape of solidifying materials combining both tension and bending driven deformations.

Godefroid, J., Marcellan, A., Bouttes, D., Barthel, E., and Monteux, C., Soft Matter, 2023


See also...

One-step mixing preparation of pH and salt stimuli-responsive biocompatible W/O/W emulsions

Fine tuning of pH and ionic strength determines which types of emulsion will form among oil in water, water in oil and W/O/W multiple emulsions. (...) 

> More...

From aqueous silica dispersions to damp-proof porous materials

The hydrophobization of nanoparticles impacts their structuration in aqueous dispersions and how this structure resists drying stress. To (...) 

> More...


Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Sciences and Enginering - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here
Legal notes