Van der Waals forces modify the fluctuations of the surface of a liquid film

This effect has been measured in collaboration between SIMM, SVI (Saint-Gobain-CNRS) and LOMA (Univ. Bordeaux)

As a result of thermal motion, the free surface of any liquid film fluctuates and the amplitude of its height fluctuations (less than 1nm!) are ruled by viscous and capillary effects. When the film is spread on a solid substrate and its thickness is smaller than about 100 nm, the fluctuation amplitudes are modified by the intermolecular forces. Quantitative predictions of this effect were made in the past decades but, up to date, it had not been fully measured. Using a dedicated experimental set-up we were able to form and measure the surface fluctuations of ultra-thin liquid films. The capillary spectra spanning three decades in frequency are in excellent agreement with theoretical predictions accounting for van der Waals forces. Our results emphasize the relevance of considering the effect of intermolecular forces on thermal fluctuations, which play a central role in phenomena such as drop formation, film break-up or dewetting.

C. Clavaud, M. Maza-Cuello, C. Frétigny, L. Talini, and T. Bickel
Phys. Rev. Lett. 126, 228004


See also...

Quantifying Molecular Damage during Elastomer Fracture

When rubbery materials (elastomers) are stretched, they typically extend elastically and spring back to their original shape. However, if (...) 

> More...

Gaëlle Rondepierre, a PhD student of the SIMM, winner of the French Rising Talents L’Oréal-Unesco For Women In Science Award

Gaëlle Rondepierre, a 3rd year PhD student in the lab, is one of the 35 winners of the 2020 French Rising Talents L’Oreal-Unesco For Women In (...) 

> More...


Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Sciences and Enginering - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq, M.-T. Mendy & M. Hirano-Courcot
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here