Van der Waals forces modify the fluctuations of the surface of a liquid film

This effect has been measured in collaboration between SIMM, SVI (Saint-Gobain-CNRS) and LOMA (Univ. Bordeaux)

As a result of thermal motion, the free surface of any liquid film fluctuates and the amplitude of its height fluctuations (less than 1nm!) are ruled by viscous and capillary effects. When the film is spread on a solid substrate and its thickness is smaller than about 100 nm, the fluctuation amplitudes are modified by the intermolecular forces. Quantitative predictions of this effect were made in the past decades but, up to date, it had not been fully measured. Using a dedicated experimental set-up we were able to form and measure the surface fluctuations of ultra-thin liquid films. The capillary spectra spanning three decades in frequency are in excellent agreement with theoretical predictions accounting for van der Waals forces. Our results emphasize the relevance of considering the effect of intermolecular forces on thermal fluctuations, which play a central role in phenomena such as drop formation, film break-up or dewetting.

C. Clavaud, M. Maza-Cuello, C. Frétigny, L. Talini, and T. Bickel
Phys. Rev. Lett. 126, 228004


Top



See also...

Fluctuations de surfaces libres ou comment mesurer les propriétés mécaniques et dynamiques des systèmes de la matière molle… sans les toucher !

Le prix d’instrumentation en chimie physique a été décerné à Laurence Talini, Christian Frétigny et François Lequeux, tous trois membres du laboratoire, (...) 

> More...

Kevlar fibers damage finally revealed

Aromatic polyamide fibers, known to the general public under the trade name Kevlar® fibers, push the limits of synthetic polymers in terms of (...) 

> More...

 

Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Sciences and Enginering - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05
FRANCE

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here
Legal notes