Large and non linear permeability increase in hydrogel membranes

Hydrogels which are hydrophilic and porous materials have recently emerged as promising systems for filtration applications and requires to develop hydrogels with high permeability. To obtain hydrogels with controlled permeability we prepare hydrogel membranes by the photopolymerization of a mixture of poly (ethylene glycol) diacrylate (PEGDA) and large poly(ethylene glycol) (PEG) chains of 300 000 g.mol-1 in the presence of a photoinitiator. We find that this addition of free PEG chains induces a large and non-linear increase of the water permeability. Indeed, by changing the content of PEG chains added, we obtain variations of the hydrogel water permeability over two orders of magnitude. The highest water permeability values are obtained for the membranes when the PEG concentration is equal to its critical overlap concentration C*. Moreover, we find that the flow rate of water through the membranes varies non-linearly with the pressure. We relate this result to the deformability of the membranes as the applied pressure leads to a compression of the pores. This study provides new perspectives for the design of flexible hydrogel membranes with controlled permeability and their application in water treatment and bioseparation.

Large and non linear permeability variations of hydrogels by addition of polymeric additives, M. Alaa Eddine, S. Belbekhouche, S. De Chateauneuf Randon, T. Salez, B. Bresson, C. Monteux, Macromolecules, 2022, 10.1021/acs.macromol.2c01462


Top



See also...

Microalgae as Soft Permeable Particles

For non-motile microalgae, colloidal surface interactions are the only factor modulating their distribution in space. This is not a totally (...) 

> More...

CNRS - 80 ans plus tard, la rupture du nylon enfin observée - A. Marcellan

Malgré sa forte présence dans notre quotidien, le nylon n’avait jamais fait l’objet de tests de résistance sur une fibre isolée. Des chercheurs du (...) 

> More...

 

Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Sciences and Enginering - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05
FRANCE

  • Chair : E. Barthel
  • Steering Committee : J.B. d’Espinose, A. Chateauminois, Y. Tran, B.Bresson
  • Administration : F. Decuq & Odile Neveu
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin & M. Hanafi

Getting here
Legal notes